CFD Modeling For Entrained Flow Gasifiers

Mike Bockelie, Martin Denison, Zumao Chen, Temi Linjewile, Connie Senior and Adel Sarofim

Reaction Engineering International

Neville Holt
Electric Power Research Institute

Gasification Technologies Conference 2002
October 27-30, 2002, San Francisco, CA USA

DOE Vision 21 Program
Cost Shared Agreement DE-FC26-00NT41047
Vision 21 - Computer Simulation

- **Enabling Technology**
- **Benefit**
 - reduce time, cost and technical risk to develop new energyplex systems
 - 100 MW plant ~ 100 – 150 M$
- **Challenges**
 - need for improved component models
 - robust, high fidelity physics based models (CFD)
 - not available for many components for Vision 21 spectrum of conditions
Gasifier Model

- **Model Development**
 - Computational Fluid Dynamic (CFD) + Process models
 - Allows modification of
 - Process conditions, burner characteristics
 - Fuel type, slurry composition
 - gross geometry
 - Generic Configurations:
 - downflow / upflow
 - 1 stage / 2 stage
 - Define Parameters with DOE
 - Improved physical models
 - reaction kinetics
 - high pressure and gasification
 - slag, ash, soot, tar
 - air toxics (metals, PM2.5)

- **Collaboration**
 - N. Holt (EPRI)
 - T.Wall, (Black Coal CCSD)
 - K. Hein (IVD)

Vision 21
Modeling Opportunity- Gasifier RAM

• Carbon Conversion & Syngas Quality
 – Fuel Switching
 • Coal, Pet coke, Wastes, Oil, Biomass, Dirt, Blends
 – Fuel Feed System
 • Dry (N2, CO2); Wet (H2O); Pre-heat; Grind size
 • Oxidant: Air vs O2
 – System Modifications / Scale Up
 • Injectors (location, quantity, orientation, spray)
 • Volume (L/D ratio)
 • System pressure

• Slag and Ash Management
 – Viscosity, composition, flux mat’l
 – Carbon content: slag vs flyash

• Refractory Wear
 – Heat extraction

• Transient Operation
 – start-up / shutdown / switching

See Gasification Technologies 2001:
• Stiegel, Clayton and Wimer
• Holt
See Clearwater 2002
• Dogan

Vision 21
Qualifications

- >130 boilers, process furnaces and incinerators in several countries burning a range of fuels including coal, oil, gas, wood, straw, petcoke, tires, hazardous waste

- Complementary relationships with boiler owners, OEMs and service/equipment providers to develop solutions in areas including:
 - NOx Control
 - Corrosion and Deposition
 - Heat flux
 - SOx Control
 - CO, hydrocarbon emissions
 - Carbon-in-flyash
 - Opacity
 - Air toxics (fine particulate, mercury, soot)

- Independent evaluation
CFD Model

Inputs
- Geometry
- Wall Properties
- Fuel & Oxidant
 - Properties
 - Composition
 - Ultimate, proximate
 - Ash composition
 - Temperature
 - Particle grind
 - Splits
 - Multiple Injectors
 - Quench

Outputs = Predicted Values
- Carbon Conversion
- Flow Patterns & Velocities
- Gas & Surface Temperatures
- Gas Species Concentrations
 - Major: CO2, CH4, H2, H2O, N2, O2
 - Minor: H2S, COS, NH3, HCN, ...
 - Reducing vs oxidizing
- Wall Heat Transfer
 - Incident, net flux
 - Backside cooling
- Particle / Droplet Trajectories and Reactions
 - Time temperature histories
 - Wall deposition
 - Flyash (Unburned carbon)
 - Slag
 - Temperature, viscosity, thickness
 - Composition
CFD Model

- **Computer model represents**
 - Gasifier geometry
 - Operating conditions
 - Gasification processes

- **Accuracy depends on**
 - Input accuracy
 - Numerics
 - Representation of physics & chemistry

See Pittsburgh Coal Conference 2002 Paper for model details
Flowing Slag Model

- Model accounts for:
 - Wall refractory properties
 - Back side cooling
 - Fire side flow field + heat transfer
 - Particle deposition on wall
 - Local Deposition Rate
 - Fuel ash properties
 - Composition (ash, carbon)
 - Burning on wall

- Slag model computes
 - T_{cv} = critical viscosity
 - ash composition
 - Slag surface temperature
 - Liquid & frozen slag layer thickness
 - Heat transfer through wall

Based on work by [Benyon], [CCSD], [Senior], [Seggiani]
Flowing Slag Model

Critical Viscosity: Predicted vs Measured

\[T_{cv} [K] = 3452 - 519.5\alpha + 74.5\alpha^2 - 67.8\beta + 0.86\beta^2 \]

Where \(\alpha = \frac{\text{SiO}_2/\text{Al}_2\text{O}_3}{\text{SiO}_2 + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3 + \text{CaO} + \text{MgO}} \) and \(\beta = \text{Fe}_2\text{O}_3 + \text{CaO} + \text{MgO} \)

\(\text{SiO}_2 + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3 + \text{CaO} + \text{MgO} = 100 \) [weight%]

Measured data from Patterson et al, 2001
Firing Conditions
- [Benyon, 2002], [Seggiani, 1998]
- Pressure = 25 atm.
- 2600 tpd dried bituminous coal
 - 22% ash
- Dry feed
 - N2:Coal (lb) = 0.075
- Oxidant
 - 76% O2, 11% H2O, 10% N2, 3% Ar
 - O2:C (molar) = 0.46
 - Inlet Stoichiometry ~ 0.4

<table>
<thead>
<tr>
<th>Exit Conditions</th>
<th>Seggiani</th>
<th>Benyon</th>
<th>REI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Temp (K)</td>
<td>1803</td>
<td>(1650)</td>
<td>1790</td>
</tr>
<tr>
<td>CO (wt %)</td>
<td>76.5</td>
<td>70.9</td>
<td>76.8</td>
</tr>
<tr>
<td>CO2 (wt %)</td>
<td>3.2</td>
<td>10.0</td>
<td>6.0</td>
</tr>
<tr>
<td>H2 (wt %)</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>H2O (wt %)</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>N2 (wt %)</td>
<td>-</td>
<td>-</td>
<td>10.1</td>
</tr>
<tr>
<td>Deposition (%)</td>
<td>-</td>
<td>-</td>
<td>4.7</td>
</tr>
<tr>
<td>Carbon Conversion(%)</td>
<td>-</td>
<td>-</td>
<td>~100</td>
</tr>
<tr>
<td>HHV (Btu/lb)</td>
<td>(4431)</td>
<td>(4248)</td>
<td>4622</td>
</tr>
<tr>
<td>Cold-Gas Efficiency (%)</td>
<td>-</td>
<td>(91.5)</td>
<td>80.5</td>
</tr>
</tbody>
</table>

(... = estimated value)
Slag Model Summary

Slag Surface Temperature

Liquid Slag Thickness

Solid Slag Thickness

Gas temperature, K

CO

Seggiani

Benyon

REI
Slag Thickness

- curve = camera path
- ball on curve = camera location
- displayed = solid slag thickness
Example: Two Stage – Up Flow

- **Vision 21 Firing Conditions**
 - Pressure = 28 atm.
 - 3000 tpd Illinois #6
 - H2O 11%, Ash 10%
 - Recycle 100 tpd char + ash
 - Slurry: 74% solids (wt.)
 - Slurry Distribution
 - 39%, 39%, 22% (upper)
 - Oxidant
 - 95% O2, 5% N2
 - O2:C (molar) = 0.43
 - Inlet Stoichiometry ~ 0.50

- **Firing System**
 - 4 fuel injectors / level
 - Fuel Injectors ~ pipes

![Diagram of two-stage upflow configuration with labels for upper and lower injectors, jet centerline, and 6D and 0.5D distances.](attachment:diagram.png)
Flow Field

Gas Temperature, K

Axial Velocity, m/s
Gas Composition

H₂ CO H₂O CO₂ O₂
Particles and Droplets

Volatile Mass Fraction

Char Mass Fraction

Water Droplet Trajectories
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Exit</th>
<th>FGR / Cool</th>
<th>NETL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit Temperature, K</td>
<td>1611</td>
<td>1335</td>
<td>1311*</td>
</tr>
<tr>
<td>Carbon Conversion, %</td>
<td>97.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exit LOI, %</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deposit LOI, %</td>
<td>28.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deposition, %</td>
<td>6.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PFR Residence Time, s</td>
<td>1.24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Particle Residence Time, s</td>
<td>0.63</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Water Droplet Res. Time, s</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mole Fraction: CO</td>
<td>43.2%</td>
<td>43.4%</td>
<td>43.5%</td>
</tr>
<tr>
<td>H₂</td>
<td>29.2%</td>
<td>29.6%</td>
<td>32.5%</td>
</tr>
<tr>
<td>H₂O</td>
<td>16.7%</td>
<td>16.7%</td>
<td>13.6%</td>
</tr>
<tr>
<td>CO₂</td>
<td>8.3%</td>
<td>8.5%</td>
<td>8.6%</td>
</tr>
<tr>
<td>H₂S</td>
<td>0.8%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>COS</td>
<td>0.0%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N₂</td>
<td>1.7%</td>
<td>1.7%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Exit Mass Flow, klb/hr</td>
<td>483</td>
<td>-</td>
<td>489*</td>
</tr>
<tr>
<td>HHV of Syngas, Btu/lb</td>
<td>4622</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HHV of Syngas, Btu/SCF</td>
<td>237</td>
<td>-</td>
<td>250*</td>
</tr>
<tr>
<td>Cold-Gas Efficiency</td>
<td>78.0%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

V21 “Design” Conditions

- DOE-NETL flow sheet analysis of “DESTEC-style” 2 stage gasifier in an IGCC plant
- Syngas:
 - At Gasifier exit (*):
 - Gas Composition after GCU:

Minor Species:

\[\text{NH}_3, \text{HCN}, \text{O}, \text{OH}, \text{CH}, \text{CH}_4, \text{C}_2\text{H}_2, \text{H}, \text{N}, \text{HCl}, \text{H}_2\text{S}, \text{COS} < 1 \% \]
Single Stage – Down Flow

- **Vision 21 Firing Conditions**
 - Pressure = 32 atm.
 - 3000 tpd Illinois #6
 - H2O 11%, Ash 10%
 - Slurry: 74% solids (wt.)
 - Oxidant
 - 95% O2, 5% N2
 - O2:C (molar) = 0.46
 - Inlet Stoichiometry ~ 0.51
Gas, Particle and Droplet Flows

- Gas Temp., K
- Axial Gas Velocity, m/s
- Particle Coal Fraction
- Particle Char Fraction
- Water mole fraction
- H_2
Compare

<table>
<thead>
<tr>
<th></th>
<th>Exit</th>
<th>cool/clean</th>
<th>NETL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit Temperature, K</td>
<td>1641</td>
<td>-</td>
<td>1650*</td>
</tr>
<tr>
<td>Carbon Conversion, %</td>
<td>98.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exit LOI, %</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deposit LOI, %</td>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deposition, %</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PFR Residence Time, s</td>
<td>1.41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Particle Residence Time, s</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Water Droplet Res. Time, s</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mole Fraction: CO</td>
<td>43.3%</td>
<td>41.3%</td>
<td>41.8%</td>
</tr>
<tr>
<td></td>
<td>28.2%</td>
<td>30.8%</td>
<td>30.8%</td>
</tr>
<tr>
<td></td>
<td>17.3%</td>
<td>15.1%</td>
<td>15.3%</td>
</tr>
<tr>
<td></td>
<td>8.6%</td>
<td>10.1%</td>
<td>10.2%</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.0%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.7%</td>
<td>1.7%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Exit Mass Flow, klb/hr</td>
<td>525</td>
<td>-</td>
<td>524*</td>
</tr>
<tr>
<td>HHV of Syngas, Btu/lb</td>
<td>4508</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HHV of Syngas, Btu/SCF</td>
<td>236</td>
<td>-</td>
<td>240*</td>
</tr>
<tr>
<td>Cold-Gas Efficiency</td>
<td>78.8%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- **V21 “Design” Conditions**
 - DOE flow sheet analysis of “Texaco-style” 1 stage gasifier in an IGCC plant
 - **Syngas**:
 - At Gasifier exit (*):
 - Gas Composition after GCU:
 - \(T = 843 \text{ K} \) (1060F)

Minor Species:

\[\text{NH}_3, \text{HCN}, \text{O}, \text{OH}, \text{CH}, \text{CH}_4, \]
\[\text{C}_2\text{H}_2, \text{H}, \text{N}, \text{HCl}, \text{H}_2\text{S}, \text{COS} < 1 \% \]
Fuel Switch – Petcoke

New Firing Conditions
- Match syngas BTU/hr from Illinois #6 case
- Flow rates:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Illinois#6</th>
<th>Petcoke</th>
<th>%Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel (tpd)</td>
<td>3089</td>
<td>2569</td>
<td>-16.8%</td>
</tr>
<tr>
<td>Oxidant (tpd)</td>
<td>2535</td>
<td>1965</td>
<td>-22.5%</td>
</tr>
<tr>
<td>(O_2):C Mole Ratio</td>
<td>0.459</td>
<td>0.365</td>
<td>-20.5%</td>
</tr>
<tr>
<td>(H_2O):C Mole Ratio</td>
<td>0.465</td>
<td>0.499</td>
<td>7.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Illinois#6</th>
<th>Petcoke</th>
<th>%Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit Temperature, K</td>
<td>1641</td>
<td>1610</td>
<td></td>
</tr>
<tr>
<td>Carbon Conversion, %</td>
<td>98.3</td>
<td>97.9</td>
<td></td>
</tr>
<tr>
<td>Exit LOI, %</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Deposit LOI, %</td>
<td>33</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Deposition, %</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PFR Residence Time, s</td>
<td>1.41</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>Particle Residence Time, s</td>
<td>0.20</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Water Droplet Res. Time, s</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Mole Fraction: CO</td>
<td>43.3%</td>
<td>53.4%</td>
<td></td>
</tr>
<tr>
<td>(H_2)</td>
<td>28.2%</td>
<td>28.5%</td>
<td></td>
</tr>
<tr>
<td>(H_2O)</td>
<td>17.3%</td>
<td>9.4%</td>
<td></td>
</tr>
<tr>
<td>(CO_2)</td>
<td>8.6%</td>
<td>5.8%</td>
<td></td>
</tr>
<tr>
<td>(H_2S)</td>
<td>0.8%</td>
<td>1.2%</td>
<td></td>
</tr>
<tr>
<td>COS</td>
<td>0.0%</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>(N_2)</td>
<td>1.7%</td>
<td>1.5%</td>
<td></td>
</tr>
<tr>
<td>Exit Mass Flow, klb/hr</td>
<td>525</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>HHV of Syngas, Btu/lb</td>
<td>4508</td>
<td>5026</td>
<td></td>
</tr>
<tr>
<td>HHV of Syngas, Btu/SCF</td>
<td>236</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>mmBtu/hr</td>
<td>2367</td>
<td>2278</td>
<td></td>
</tr>
<tr>
<td>Cold-Gas Efficiency</td>
<td>78.8%</td>
<td>83.4%</td>
<td></td>
</tr>
</tbody>
</table>
Gasifier Process Model

- Fast running Process Model for Gasifier
 - Design inputs for CFD model
 - Indicator for proper slag flow

- Consists of two submodels
 - Zonal Equilibrium model
 - Particle burnout model

- Iterate between the submodels
Summary

- CFD models for entrained flow gasifiers
 - Mechanistic based approach
 - Analysis tool to address broad range of operational and design problems for gasifiers
- Comparisons to available information
 …getting better …
- Next?
 - Improve
 - slag (mineral matter, heat extraction), soot, air toxics
 - gasification kinetics
 - Applications
 - Operations: fuel switching (Petcoke, blends)
 - R+D questions: feed type, volume,…
 - Impact of syngas on downstream equipment & process
Acknowledgements

DOE NETL (COR=John Wimer, PM = Larry Ruth, DE-FC26-00FNT41047)

REI

Dave Swensen (Software Lead), Martin Denison (Modeling Lead)
Zumao Chen, Temi Linjewile, Connie Senior, Adel Sarofim, REI Technical Staff
- Develop component models, workbench, ….

Collaborators

Neville Holt (EPRI)
Gasifier System Configurations & Validation

Terry Wall, Peter Benyon, David Harris, John Kent and others (CCSD, Australia)
Coal Gasification Data and Mineral Matter Sub-models

Klaus Hein, Bene Risio (U. Stuttgart/IVD, RECOM)
transient gasifier simulations, gasification in the EU
Questions, Comments, Suggestions.....

bockelie@reaction-eng.com