Recent Selexol™, PolySep™ and PolyBed™ Operating Experience with Gasification for Power and Hydrogen

Daniel J. Kubek, Curtis R. Sharp, & Douglas E. Kuper
UOP LLC, Des Plaines, Illinois, USA

Michael E. Clark
UOP LLC, Houston, Texas, USA

Maurizio Di Dio & Michael Whysall
UOP NV, Antwerp, Belgium

Gasification Technologies 2002
27 - 30 October 2002 - San Francisco, California, USA
Presentation Overview

- **Technologies for Synthesis Gas Treatment**
 - SELEXOL Process - Acid Gas Removal
 - POLYSEP Membrane System - H₂ Recovery and H₂/CO Adjustment
 - POLYBED PSA System - H₂ Purification

- **Recent Operating Experience**
 - SARLUX IGCC Project
 - at Sarroch, Sardinia, Italy
 - FARMLAND Ammonia Fertilizer Project
 - at Coffeyville, Kansas, USA
Case Study:

Refinery Hydrogen & Power Production

- Gasification of Refinery Residues for Hydrogen and Power
- Benefits of High Purity Hydrogen for Hydrotreaters & Hydrocrackers
 - Existing units
 - Grass root units

Conclusions
Selexol Process

- Cyclic absorption/regeneration process for selective removal of H_2S, COS, & CO$_2$
- Uses a physical solvent

 \[
 \text{Chemical formula: } \text{CH}_3\text{O}(\text{C}_2\text{H}_4\text{O})_n\text{CH}_3 \text{ where } n \text{ is between 3 & 9}
 \]
- Selectivity

 - $\text{H}_2\text{S} / \text{CO}_2 \sim 9$
 - $\text{CO}_2 / \text{H}_2 \sim 76$
- 55 operating units in syngas and natural gas service
PolySep Membrane System

- Gas-permeable hollow fiber polymer membranes
- Concentration (or Recovery) of H₂ and adjustment of syngas H₂/CO ratio
- Separation based on difference in permeation rates between H₂ and impurities (H₂ is fast)
- Partial pressure difference across membrane provides driving force
- Supplied as a skid-mounted system
- ~ 40 operating units
PolyBed PSA System
Pressure Swing Adsorption

- Multiple vessels containing adsorbent
- Impurities adsorbed at high partial pressure
- Impurities desorbed at low partial pressure to regenerate bed
- \textbf{H}_2 recovered at high purity (typically 99 to 99.9999 vol%)
- Supplied as a skid-mounted system
- ~ 700 operating units
Sarlux S.r.L.
Sarroch, Sardinia, Italy
IGCC Complex
Sarlux IGCC Complex

Feedstock: 173 T/H visbreaker residue to gasifier

Products: 35.8 MM SCFD H₂ for SARAS hydrocracker, 550 MW electricity, & sulfur

Commissioning: August 2000

Process Licensors

- **Gasification:** ChevronTexaco
- **Acid Gas Removal:** UOP Selexol
- **H₂ Purification:** UOP PolySep Membrane & PolyBed PSA
- **Sulfur:** Lurgi
Sarlux Block Flow Diagram

- Air Separation Unit
 - Air
 - O₂

- Combined Cycle Power Plant
 - Electric Power
 - Steam for Export

- PolyBed PSA
 - Raw Hydrogen

- PolySep Membrane
 - High Purity Hydrogen for SARAS Hydrocracker

- Gasifier with Quench & Scrubbing
 - Feed

- Gas Cooling & COS Hydrolysis
 - Purified Syngas

- SELEXOL
 - Tail Gas

- Claus Plant
 - Elemental Sulfur
Sarlux Selexol Units

Two parallel UOP Selexol Units
Sarlux H_2 Purification Unit

UOP PolyBed PSA Unit & UOP PolySep Membrane Skids
<table>
<thead>
<tr>
<th>Operating Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed Stream</td>
</tr>
<tr>
<td>Treated Syngas</td>
</tr>
<tr>
<td>Product Purity</td>
</tr>
<tr>
<td>Hydrogen Product</td>
</tr>
<tr>
<td>H₂ Production</td>
</tr>
<tr>
<td>H₂ Purity</td>
</tr>
<tr>
<td>Acid Gas</td>
</tr>
<tr>
<td>Product Purity</td>
</tr>
</tbody>
</table>
Farmland Industries
Coffeyville, Kansas, USA
Gasification Ammonia Complex
Farmland Ammonia Fertilizer Complex

Feedstock: 45 T/H petroleum coke
Products: 90 MM SCFD High Purity H₂
 10.6 MM SCFD CO₂
Commissioning: July 2000

Process Licensors

Gasification: ChevronTexaco
Gas Purification Block:
 - Acid Gas Removal: UOP Selexol (2-stage unit)
 - H₂ Purification: UOP PolyBed PSA
Sulfur: Black & Veatch Pritchard
Ammonia / UAN: Ammonia Casale / Weatherly
Farmland Ammonia Fertilizer Complex
Operating Results

- **Raw H₂ from Selexol unit to PSA unit**
 - > 93 mole % H₂
 - < 5 mole % CO₂
 - < 1 ppm H₂S & < 1 ppm COS

- **High Purity H₂ product from PSA to ammonia syngas loop**
 - 90 MM SCFD High Purity H2 (> 99.9%)
 - 90 % hydrogen recovery

- **Raw CO₂ from Selexol unit to CO₂ purification reactor**
 - 10.6 MM SCFD Raw CO₂ (> 95 mole %)
 - < 1 ppm H₂S & < 10 ppm COS
Case Study
Refinery Gasification Complex for Hydrogen & Power Production
Case Study: Refinery Gasification Complex for Hydrogen & Power Production

Scope

- Gasification complex converts Petroleum Coke to Syngas
- Uses low value (or negative value) feed
- Power, steam, and hydrogen produced for export back to the refinery
 - Production of ultra high purity hydrogen (> 99.9 mole % \(\text{H}_2 \)) for hydroprocessing units
 - Removal of CO\(_2\) stream for sequestration and dilution of gas turbine feed (> 98 mole % CO\(_2\))
 - Removal of concentrated H\(_2\)S stream to Claus (35 to 65 mole % H\(_2\)S)
Case Study: Refinery Gasification Complex for Hydrogen & Power Production

Feed & Product Summary

- Feedstock
 - 100 T/H petroleum coke
- Products
 - 500 MW electricity
 - 80 MM SCFD Ultra High Purity H₂
 - Steam
 - CO₂
Case Study: Refinery Gasification Complex for Hydrogen & Power Production

Process Technologies

- Gasification
- COS Hydrolysis * on unshifted Syngas to Gas Turbine
- CO Shift on Syngas to H₂ Purification
- Gas Purification Block
 - Acid Gas Removal UOP Selexol (2-stage)
 - H₂ Purification: 99.9 % H₂ with PSA or 95.0 % H₂ with Methanator
- Claus Unit

* requirement depends on split between power & H₂ production
Case Study: Refinery Gasification Complex for Hydrogen & Power Production

Study of H₂ Purity - Options Considered

■ Option 1:
 – Single stage of CO shift with “partial” CO₂ removal
 – PSA with 99.9 mol% H₂ purity

■ Option 2:
 – Two stages of CO shift with “complete” CO₂ removal
 – Methanation with 95 mol% H₂ purity
Case Study: Option 1 - PSA System

Air Separation Unit

Air

N₂

O₂

Gasifier with Quench & Scrubbing

Feed

COS Hydrolysis & Gas Cooling

1-Stage CO Shift & Gas Cooling

SELEXOL 2-stage

PolyBed PSA

Combined Cycle Power Plant

Electric Power

Steam for Export

N₂

Treated Unshifted Syngas

N₂ / CO₂ Diluent

High Purity H₂

PSA Tail Gas

Elemental Sulfur

Claus Plant

Treated Syngas

Tail Gas

Acid Gas

Raw H₂

Electric Power
Case Study: Option 2 - Methanator

- Air
 - Air Separation Unit
 - N₂
 - O₂
 - Gasifier with Quench & Scrubbing
 - Feed
 - COS Hydrolysis & Gas Cooling
 - 2-Stage CO Shift & Gas Cooling
 - SELEXOL 2-stage
 - Raw H₂
 - Treated Unshifted Syngas
 - Acid Gas
 - Tail Gas

- Electric Power
- Steam for Export
 - Combined Cycle Power Plant
 - Methanator
 - Low Purity H₂
 - Claus Plant
 - Elemental Sulfur
 - Steam for Export
 - Electric Power

- SELEXOL 2-stage
 - Raw H₂
 - Acid Gas
 - Tail Gas

- Gasifier with Quench & Scrubbing
 - Feed
 - O₂
 - N₂

- Air Separation Unit
 - N₂
 - O₂
Advantages of High Purity H_2 in Refinery Hydrotreating

Advantages of 99.9 % H_2 over 95 % H_2

- Minimize capital cost of new hydroprocessing units
- Minimize operating costs by extending catalyst life - by as much as 100%
- Increase throughput of existing units
Advantages of High Purity H_2 in Refinery Hydrotreating

Advantages of PSA over Methanation

- PSA removes CO and CO$_2$ to ppm levels
- CO Shift
 - 1-stage required for PSA
 - 2 to 3 stages required for Methanation
- CO$_2$ Slip in Selexol Unit
 - PSA allows higher slip (%) since it is not sensitive to CO + CO$_2$ levels in feed
 - Methanation requires low slip (ppm level) since CO + CO$_2$ levels > 1.5 % cause excessive temperature exotherm
- PSA can remove N$_2$ and Ar - thus O$_2$ purity is not critical
Benefits of 99.9% PSA H₂ vs. 95% Methanator H₂ for Existing Units

Existing Hydrotreater #1

- **Basis:** 40,000 BPD operating with 95% makeup H₂
- **Benefit:** 30 vs. 17 month cycle resulting in $500,000/yr lower annualized turnaround cost

Existing Hydrotreater #2

- **Basis:** 16,500 BPD operating with 95% makeup H₂
- **Benefit:** 5 vs. 3.5 year cycle resulting in $100,000/yr lower annualized turnaround cost
Benefits of 99.9% PSA H_2 vs. 95% Methanator H_2 for Existing Units

Existing Hydrocracker

- **Basis:** 44,500 BPD operating with 90% makeup H_2 from Methanator and Platforming net gas

- **Benefit:** 4 vs. 3 year cycle resulting in 1.2 million/yr lower annualized turnaround cost

 or

 Equivalent cycle length and 8% more feed resulting in 3 million/yr higher profit
Benefits of 99.9% PSA H_2 vs. 95% Methanator H_2 for Grass Roots Units

Grass Roots Hydrotreater

- **Basis:** Hydrotreater for Ultra-Low Sulfur Diesel Production - 5 ppm Sulfur Product, 50,000 BPD capacity designed for 95% makeup H_2

- **Benefit:** Equivalent cycle length with 160 psi lower design pressure resulting in 13% lower capital cost - an $8 million savings
UOP Gas Purification Block Conclusions

Sarlux & Farmland Units Demonstrate

- UOP Gas Purification Block optimizes acid gas removal and hydrogen purification
- Selexol, PolySep Membrane, & PolyBed PSA are well suited for gasification service
- High overall sulfur recovery (> 99.75%)
- High H₂S concentration in acid gas to Claus unit
- Bulk CO₂ removal if necessary
- Very stable operation
- Minimal operator attention required

UOP GTC-30
Co-production of Power & High Purity H₂ using PolySep Membrane and PolyBed PSA in a Refinery Gasification Complex

- High Purity H₂ for Existing Hydroprocessing Units
 - Extension of cycle time to reduce OPEX for Hydrotreater
 - Extension of cycle time or increase in capacity for Hydrocracker

- High Purity H₂ for Grass Roots Hydroprocessing Units
 - Reduction in CAPEX & OPEX for Hydrotreaters
 - Similar benefit for Hydrocrackers
Questions?