AVESTAR Center for Operational Excellence of IGCC Power Plants with CO2 Capture

www.netl.doe.gov/avestar

Graham Provost
Director, Fossil Consulting Services, Inc.

GTC 2012, Washington, D.C.
October 28-31, 2012
Presentation Outline

• U.S. Energy Challenges
 – Power Generation Capacity and Clean Energy Plant Operations

• Advanced Virtual Energy Simulation Training And Research (AVESTAR™)
 – Mission and Goals
 – Integrated Gasification Combined Cycle (IGCC) with CO₂ Capture
 • Process/Project Overview
 • Dynamic Simulator/Operator Training System (OTS)
 • 3D Virtual Immersive Training System (ITS)

• Facilities, Training, Education, and R&D

• Future Simulators/Directions
U.S. Energy Challenges
Power Generation Capacity

Meet increasing demand for clean, affordable, and secure energy by developing a diversified portfolio of power generation plants

- Optimize efficiency of coal-fired plants, while taking full advantage of carbon capture, utilization, and storage (CCUS)
 - Accelerate deployment of post-combustion CO$_2$ capture for pulverized coal plants
 - Exploit pre-combustion CO$_2$ capture advantages and fuel/product flexibility of gasification systems (e.g., IGCC)
- Grow gas-fired generation driven by large increase in shale gas
 - Exploit post-combustion CO$_2$ capture
- Grow share of generation from renewables (e.g., wind, solar)

Source: ExxonMobil-2012 The Outlook for Energy: A View to 2040
U.S. Energy Challenges
Clean Energy Plant Operations

• Improve plant operability, controllability, and flexibility
• Optimize not only baseload operations, but also plant startup, shutdown, and feedstock switchovers
• Respond effectively to process and market disturbances
• Handle faulted operations and abnormal situations
• Increase cycling, ramping, and power demand load following, while minimizing plant derates, emissions, and equipment damage
• Optimize performance by controlling operations closer to economic and environmental constraints, while avoiding any unsafe, wasteful, or inefficient events
• **Mission**
 – Accelerate progress toward achieving *Operational Excellence* for *Clean Energy Plants*
 • 1) Asset, 2) Control, 3) Environment & Safety, and 4) People
• **Goals**
 – Dynamic Simulator Development
 • Develop portfolio of high-fidelity real-time dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs)
 – Advanced Computational Research
 • Bring together advanced dynamic simulation-based technologies, state-of-the-art facilities, and leading energy experts
 • Conduct collaborative R&D on dynamics, control/sensors, real-time optimization, virtual plants, smart manufacturing, and modern grid
 – Training and Education
 • Train workforce and educate students using experiential learning
Presentation Outline

• U.S. Energy Challenges
 – Power Generation Capacity and Clean Energy Plant Operations

• Advanced Virtual Energy Simulation Training And Research (AVESTAR™)
 – Mission and Goals
 – Integrated Gasification Combined Cycle (IGCC) with CO₂ Capture
 • Process/Project Overview
 • Dynamic Simulator/Operator Training System (OTS)
 • 3D Virtual Immersive Training System (ITS)
 – Facilities, Training, Education, and R&D
 – Future Simulators/Directions
IGCC Power Plant with CO$_2$ Capture

- IGCC operates at high pressure with oxygen instead of air
- CO$_2$ is removed before combustion
- Increased power plant efficiency
- Lower cost of electricity
- CO$_2$ is easier to capture and is produced at higher pressures

Plant Section	**Description**
Gasification | Entrained-flow Gasifier
Air Separation | Elevated-P Cryogenic ASU (95% vol O$_2$)
H$_2$S Separation | Physical Solvent AGR 1st Stage
Sulfur Recovery | Claus Plant
CO$_2$ Separation | Physical Solvent AGR 2nd Stage
CO$_2$ Compression | Four stage (2200 psia)
Gas Turbines | Adv. F Class (232 MW output each)
Steam Cycle | Subcritical (1,800 psig/1,000ºF/1,000ºF)
Power Output | 746 MW gross (556 MW net)
Status of IGCC Power Plants

Without/With CO₂ Capture

United States
- **Wabash River Energy**
 - Wabash River, IN
 - 262 MWe, 1995

- **Tampa Electric Co.**
 - Tampa, FL
 - 250 MWe, 1996

- **Duke Energy**
 - Edwardsport, IN
 - 618 MWe, Fall 2012
 - 23% CO₂ Capture Retrofit

Southern Company
- Kemper Co., MS
- 65% CO₂ capture

Texas Clean Energy
- Odessa, TX
- 90% CO₂ capture (EOR)
- Urea

SCS Energy
- Kern Co., CA
- 90% CO₂ capture (EOR)
- Hydrogen

Europe, Asia, Australia
- **Nuon**
 - Buggenum, Netherlands
 - 253 MWe, 1994

- **ElcoGas**
 - Puertollano, Spain
 - 298 MWe, 1998

- **Nakoso, Japan**
 - 250 MWe, 2007

- **South Korea**
- **China**
- **Australia**
IGCC Power Plant with CO$_2$ Capture
OTS/ITS Project Overview

• Dynamic Simulator/Operator Training System (OTS)
 – Phase 1: Scoping Study
 – Phase 2: Planning, Functional Design Specification
 – Phase 3: Development (10/08), Model Validation
 – Phase 4: Factory Acceptance Testing (FAT)
 – Phase 5: Deployment, SAT (03/11)

• 3D Virtual Immersive Training System (ITS)
 – Project kickoff in 12/09 with deployment in 07/12

• Development Partners
 \[\text{NETL} \quad \text{West Virginia University} \quad \text{ECS}\]

• Industrial Collaborators
 \[\text{DOOSAN} \quad \text{SOUTHERN COMPANY} \quad \text{AEP} \quad \text{bp} \quad \text{GREATER RIVER ENERGY}\]
IGCC with CO\textsubscript{2} Capture Simulator
Reference Plant (2 Trains)

- Area 100: System Controls*
- Area 200: Slurry Preparation*
- Area 300: Elevated-Pressure Air Separation Unit (ASU)
- Area 400: Gasifiers
- Area 500: Syngas Scrubber System
- Area 600: Shift Reactors Systems
- Area 700: Gas Cooling System
- Area 800: Sour Water Stripper*
- Area 900: Mercury Removal System
- Area 1000: Acid Gas Removal (AGR)
- Area 1100: CO\textsubscript{2} Compression
- Area 1200: Syngas Reheat and Expansion
- Area 1300: Sulfur Recovery Unit*

- Area 1400: Hydrogenation*
- Area 1500: Gas Turbine
- Area 1600: Cooling Water System*
- Area 1700: Boiler Water System
- Area 1800: Circulating Water System*
- Area 1900: HRSG Steam System
- Area 2000: Steam Turbine*
- Area 2100: Selective Catalytic Reduction (SCR)
- Area 2200: Electrical System*

* - Area common to both Trains

Reference
IGCC Plant A – Gasifier Feed & Cooling

Process & Instrumentation Diagram
IGCC Plant A – Gasifier Feed & Cooling

InTouch™ - Human Machine Interface (HMI)
IGCC Dynamic Simulator/OTS
Capabilities and Features

• Full-Scope, High-Fidelity, Real-Time Dynamic Simulator (DYNSIM)
• Modular: IGCC with CO₂ Capture, Process (Gasification), Power (CC)
• Fuels: Coal, Petcoke, Biomass
• OTS: HMI (InTouch), Trends, Alarms
• Instructor: ICs, RFs, Malfunctions
• Controls: Regulatory (PID), Coordinated (Gasifier/Turbine Lead)
• Operations: Normal Baseload, Startup, Shutdown, Load Following, Abnormal Situation Handling

Deployed at AVestar Center in March 2011
Presentation Outline

• U.S. Energy Challenges
 – Electricity Generation, Modern Grid Era, and Clean Energy Plant Operations

• Advanced Virtual Energy Simulation Training And Research (AVESTAR™)
 – Mission and Goals
 – Integrated Gasification Combined Cycle (IGCC) with CO₂ Capture
 • Process/Project Overview
 • Dynamic Simulator/Operator Training System (OTS)
 • 3D Virtual Immersive Training System (ITS)
 – Facilities, Training, Education, and R&D
 – Future Simulators/Directors
IGCC Immersive Training System/ Invensys EyeSim

Capabilities and Features

• 3D Virtual Plant Model
 – 3D computer-aided design (CAD)
 – Plant photos for photorealism

• 3D Immersive Interaction/Content
 – Avatar represents field operator
 – Navigation using game pad
 – Remote field functions
 – Collision geometry and sound
 – Popup trends (variables vs. time)
 – Transparent equipment objects
 – Highlighted virtual content/scenarios

• Benefits
 – Added dimension of plant realism
 – Plant familiarization and walkthrough
 – OTS/ITS for control room and plant field operators, promoting teamwork

Deployed at AVESTAR Center in July 2012; Invensys EYESIM software
AVESTAR Center Facilities

• **Locations**
 – NETL: R&D
 – WVU: Education, Training
 – Both in Morgantown, WV

• **Facilities**
 – OTS Room: Control Room
 ▪ Divider for 2 Simulators
 – ITS Room: Plant/Field
 – Local area network

• **Training Systems**
 – OTS
 ▪ 8 Operator Stations
 ▪ 2 Instructor Stations
 ▪ 2 Model Servers
 ▪ 2 Engineering Stations
 – ITS
 ▪ 2 Field Stations
 ▪ 1 Instructor Station
Presentation Outline

• U.S. Energy Challenges
 – Electricity Generation, Modern Grid Era, and Clean Energy Plant Operations

• Advanced Virtual Energy Simulation Training And Research (AVESTAR™)
 – Mission and Goals
 – Integrated Gasification Combined Cycle (IGCC) with CO₂ Capture
 • Process/Project Overview
 • Dynamic Simulator/Operator Training System (OTS)
 • 3D Virtual Immersive Training System (ITS)
 – Facilities, Training, Education, and R&D
 – Future Simulators/Directions

• Concluding Remarks
AVESTAR Training Program

- Comprehensive, hands-on, dynamic simulator-based training
- Experienced power plant trainers
- IGCC with CO\textsubscript{2} capture courses
 - Orientation to advanced operations
 - Registration inquiries and fees online
 - ITS integrated into training
- Customized courses/programs available for industry
- CEUs through West Virginia Univ.
- Collaborating with regional technical colleges on Power Plant Technology certificate/degree programs

For more information on AVESTAR training, please visit: www.netl.doe.gov/avestar/training.html
AVESTAR Education Program

• Leverage integrated OTS/ITS technology
• Enhance engineering education in process simulation, dynamics, control, and safety

• Example courses at WVU include:
 – Process Control for Chemical Engineers
 • 4-6 hours on IGCC dynamic simulator
 • Learn how plant responds dynamically to changes in manipulated inputs, as well as how control system impacts plant performance, stability, and robustness
 – Process and Dynamic Simulation
 • Theory of steady-state/dynamic process simulation
 • Development of operator training simulators
 • 3-4 weeks on IGCC dynamic simulator

• Extend to other NETL-RUA universities
AVESTAR R&D Program

• Dynamics
 – High-fidelity dynamic models
 – S/U, S/D, Load following, Ramp rate

• Controls and Sensors
 – Regulatory and coordinated control
 – Model predictive control (MPC)
 – Optimal sensor placement
 • State estimation, Disturbance rejection
 • Process monitoring, Fault diagnosis

• 3D Virtual Technology
 – Motion-based interaction
 – Interactive Field Operator Controls
Natural Gas Combined Cycle (NGCC) with Post-Combustion CO₂ Capture

• Develop NGCC dynamic simulator/OTS from the combined cycle portion of AVESTAR’s IGCC dynamic simulator/OTS

– Completed steady-state NGCC power plant design
 ➢ 2x2x1 Gas Turbine/HRSG/Steam Turbine design
– Completed modifications and dynamic testing of DYNSIM model
– Future work
 ➢ Update controls and HMIs
 ➢ Leverage in R&D/Training
 ➢ Cycling, load-following, MPC
 ➢ Add hooks for post-combustion CO₂ capture

Typical cyclical duty profile for a “two-cycled” NGCC plant. Source: GE Energy
Supercritical Pulverized Coal (SCPC) with Post-Combustion CO₂ Capture

- DOE’s Carbon Capture Simulation Initiative
 - Multi-year, multi-lab initiative, led by NETL
 - Focused on using modeling and simulation to accelerate deployment of CO₂ capture
- Industrial Challenge Problem
 - Post-combustion solid sorbent-based capture
- Plant Operations and Control
 - SCPC dynamic simulator/OTS with process/heat integration interfaces for post-combustion CO₂ capture
 - Dynamic models of solid sorbent-based CO₂ capture adsorber and regenerator reactors
 - Dynamic model of CO₂ Compression
 - Transient studies under wide range of process disturbances
AVESTAR Center
Future Directions for Virtual Energy Simulation

- **Virtual Carbon Capture Center (VCCC)**
 - Integrate, test, and optimize operation and control of CO$_2$ capture technologies with baseline power plants

- **Carbon Capture, Utilization, and Storage (CCUS)**
 - CO$_2$ Pipeline/Transport, CO$_2$ Utilization, CO$_2$ Injection

- **Shale Gas Processing Facilities**
 - Cryogenation, Fractionation (C3/4/5), and Ethane Cracking

- **Smart/Advanced Manufacturing**
 - Virtual test bed for Smart Manufacturing Leadership Coalition (SMLC)

- **Modern Power Grid**
 - Grid simulations coupled with dynamic simulators for Clean Energy Plants, Variable Renewable Generators, and Energy Storage
 - Grid operations, dynamics, control, and training
Thank You / Questions?

• For more information on AVESTAR’s simulators, facilities, training, education, and R&D, please visit us at www.netl.doe.gov/avestar

• or contact us at:
 • avestar@netl.doe.gov or gprovost@fossilconsulting.com

Disclaimer
"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."