New Gas Turbine Integration Options for ITM Oxygen in Gasification Applications

VanEric Stein
Phil Armstrong
Ted Foster

Air Products and Chemicals, Inc.

Gasification Technologies 2007
San Francisco, CA
17 October 2007
Cryogenic Distillation is state-of-the-art for tonnage oxygen

- Mature, reliable technology
- Energy intensive
- Requires 100’s of equilibrium stages
- Represents ~15% of IGCC capital cost
- Consumes ~15% of IGCC gross power output
Ion Transport Membranes (ITMs) produce high-purity oxygen at high flux

- Mixed-conducting ceramic membranes (non-porous)
- Typically operate at 800-900 °C
- 100% selective for O₂
- $O₂$ flux $\propto \frac{1}{L} \ln \left(\frac{P^{'}_{O₂}}{P^{''}_{O₂}} \right)$

$$\frac{1}{2}O₂ + 2e^- \rightarrow O^{2-}$$

$$O^{2-} \rightarrow \frac{1}{2}O₂ + 2e^-$$

compressed air

L

O^{2-}

electrons

oxygen

© Air Products and Chemicals, Inc. 2007
We are building ½-ton/day commercial-scale ITM modules ...

- Single-stage air separation yields compact designs
- Low ΔP on the air side
- All-ceramic construction
- High-temp process has better synergy w/ gasification systems
... and testing them in pilot plant
Initial pilot plant testing highly successful

- Several trials with ½-ton/day modules during the last year
- Demonstrated >99% oxygen purity from commercial-scale module and seal
- Oxygen flux consistently met or exceeded expectations and has remained steady over multi-week tests
- Just completed retrofit of advanced control system to improve reliability during startup/shutdown cycles
ITM Oxygen integrates well with gas turbine power cycles

- **AIR**
- **HRSG**
- **STEAM**
- **ELECTRIC POWER**
- **SYNGAS**
- **NON-PERMEATE**
- **VITiated AIR**
- **OXYGEN**
- **ION TRANSPORT MEMBRANE**

- **SYNGAS OXYGEN SUPPLY to GASIFIER**
- **OXYGEN COMPR’R**
- **OXYGEN COOLING**

e.g., Siemens SGT6-6000G ~300 MW
Full integration with advanced gas turbine poses challenges...

- **Air** extraction limitations
- **Oxygen Comp’r** limitations
- **Recuperator** limitations
- **Vitiated Air** limitations

Equipment:
- **ITM-Specific Gas Turbine**
- **HRSG**
- **SYNGAS**
- **STEAM**
- **Electric Power**
- **Oxygen Comp’r**
- **Oxygen Transport Membrane**
Multi-dimensional evaluation determined optimum configuration

Boost compressor / recuperator yields best overall IGCC
Boost compressor / recuperator minimizes GT design impact

Siemens SGT6-6000G ~300 MW

SIEMENS

Boost Comp’r

Recuperator

Oxygen Comp’r

Oxygen supply to gasifier

Oxygen cooling

Oxygen

Vitiated air

Ion transport membrane

Syngas

Syngas

Steam

Electric power

Air
SGT6-6000G gas turbine modifications for ITM Oxygen

Compressor Section:
- Compressed air extraction (55%)

Combustion Section:
- Vitiated air injection
- Syngas combustion with vitiated air

Casings & Structural:
- Hot gas piping & manifolding
Partial integration with standard GT also achievable ...

... while preserving significant benefits for IGCC

- Integration with modified ITM Oxygen cycle can reduce IGCC specific capital cost by 9% and increase efficiency by 1.2%, with 25% capital savings in oxygen production.

<table>
<thead>
<tr>
<th>2-on-1 GE 7FA+e design basis</th>
<th>Cryo O2</th>
<th>ITM O2</th>
<th>Δ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGCC Net Output (MW)</td>
<td>543</td>
<td>627</td>
<td>+ 15</td>
</tr>
<tr>
<td>IGCC Net Efficiency (% HHV)</td>
<td>38.4</td>
<td>38.9</td>
<td>+ 1.2</td>
</tr>
<tr>
<td>Oxygen Plant Cost ($/sTPD O₂)</td>
<td>25,000</td>
<td>18,700</td>
<td>- 25</td>
</tr>
<tr>
<td>IGCC Specific Capital Cost ($/kW)</td>
<td>1,500</td>
<td>1,368</td>
<td>- 9</td>
</tr>
</tbody>
</table>

- ITM Oxygen plant capacity: 4,550 sTPD oxygen + 13,200 sTPD diluent
Minimal integration using dedicated ITM GT offers flexible flowsheet

“Stand-alone” ITM Oxygen plant with minimal power co-production:
- 10 MWe per 1000 TPD Oxygen
- 60 MWe per 4500 TPD Oxygen
 (e.g., with Siemens GT35P, GT140P)

“Stand-alone” ITM Oxygen plant with minimal power co-production:
- 10 MWe per 1000 TPD Oxygen
- 60 MWe per 4500 TPD Oxygen
 (e.g., with Siemens GT35P, GT140P)

Oxygen-consuming application, e.g., IGCC, oxycoal combustion, etc…

© Air Products and Chemicals, Inc. 2007
GT35P/GT140P developed for full air extraction and off-board combustion

- 6 GT35P PFBC installations world-wide (’89-’98)
- 1 GT140P PFBC installation (’99)
ITM dev’t plan meets FutureGen schedule and market timing

(large energy applications)

FutureGen

Phase 3

Phase 2

Capacity (TPD)

5000+
The future remains bright for ITM Oxygen

- Commercial-scale ITM Oxygen modules are being built and tested successfully.
- Conceptual full integration with SGT6-6000G maximizes ITM benefits while minimizing GT design / development impact.
 - Partial integration with standard OEM gas turbine preserves significant benefits.
 - Minimal integration using dedicated ITM GT offers good early entry prospects.
- Air Products and the DOE are accelerating development of ITM Oxygen to reach large-tonnage scale for FutureGen plant.
Acknowledgment: DOE/NETL

This paper was written with support of the U.S. Department of Energy under Contract No. DE-FC26-98FT40343. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper.

Disclaimer

A significant portion of this report was prepared by Air Products and Chemicals, Inc. pursuant to a Cooperative Agreement partially funded by the United States Department of Energy, and neither Air Products and Chemicals, Inc. nor any of its contractors or subcontractors nor the United States Department of Energy, nor any person acting on behalf of either:

1. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

2. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Department of Energy.
Thank you
tell me more
www.airproducts.com

ITM@airproducts.com
Phone: 610-481-4475
Fax: 610-706-7420