Commodities tend to be produced by mature technologies
Cryogenic Distillation: Proven Oxygen Supply Technology

- Mature, reliable technology
- Large and growing global market (300,000+ mTPD)
- ~15% of the cost of an IGCC facility

© Air Products and Chemicals, Inc. 2004
A Typical Air Separation Plant

Major Components
- Main Air Compressor
- Front-end Cleanup
- Main Heat Exchanger
- Reboilers
- Distillation Columns

- Energy intensive
- Requires 100’s of equilibrium stages
Ceramic Membranes: Revolutionary Technology for Tonnage Oxygen Supply

- Single-stage air separation leads to compact designs
- Low pressure drop on the high-pressure side
- High-temperature process has better synergy with power generation systems
ITM Oxygen integrates well with power generation cycles
ITM Oxygen has Excellent Economic Performance in Many Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Oxygen (sTPD)</th>
<th>Power (MW)</th>
<th>Capital for Oxygen (%)</th>
<th>Power for Oxygen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGCC</td>
<td>3200</td>
<td>458</td>
<td>35%</td>
<td>37%</td>
</tr>
<tr>
<td>Decarb. Fuel</td>
<td>2400</td>
<td>300</td>
<td>35%</td>
<td>36%</td>
</tr>
<tr>
<td>Enrichment</td>
<td>1500</td>
<td>260</td>
<td>27%</td>
<td>69%</td>
</tr>
<tr>
<td>Oxyfuel</td>
<td>8030</td>
<td>500</td>
<td>48%</td>
<td>68%</td>
</tr>
<tr>
<td>GTL</td>
<td>12,500</td>
<td>n/a</td>
<td>20+%</td>
<td>n/a</td>
</tr>
</tbody>
</table>
ITM Oxygen Development Program

- DOE-sponsored Program (3 Phase, $90 million)
 - Phase I: Technical Feasibility (0.1 TPD O2)
 - Phase II: Prototypes (1 and 5 TPD O2)
 - Phase III: 25-50 TPD Demo/GT integration

- Goal: Reduce cost of oxygen by one-third

- Addresses Key Technical Risks
 - Local Performance
 - Lifetime
 - Machinery Integration
 - Ceramic Processing
 - Reliability
 - Safety

 \{ — Process Economics
 \{ — Feasibility of Manufacture
 \{ — Feasibility of Operation
ITM Oxygen Development Team

- Phase I: Technical Feasibility
 - membrane materials, structure, and performance

- Key Technical Risks:
 - Local Performance
 - Lifetime
 - Machinery Integration
 - Ceramic Processing
 - Reliability
 - Safety

GE Energy

SOFCo EFS (McDermott)

Siemens Westinghouse
Power Corporation
Technical Risk has been reduced to moderate or low levels in all categories during Phases I and II

- Local Performance
- Lifetime
- Machinery Integration
- Ceramic Processing
- Reliability
- Safety
Technical Risk Reduction Through Phase II

Ceramic Processing: develop scale-able manufacturing processes for ceramic membranes consistent with target economic benefits

- Selected and devised a planar “wafer” architecture
- Scaled-up and produced commercial-size wafers in large quantities on a prototype manufacturing line
- Built first commercial-scale ITM Oxygen modules

Current Status:
- Automating Production Line
- Building commercial scale modules for pilot plant trials
The Heart of ITM Oxygen Technology
Planar Membrane Wafer Stack

Air (vitiated)
800-900°C
200-300 psig

Thin membrane
Porous membrane support
Dense, slotted backbone
Product Withdrawal Tube
Pure Oxygen

© Air Products and Chemicals, Inc. 2004
Module Size Progression
Producing Commercial-size Wafers Since 2000
Commercial-scale ITM Oxygen Module Assembly

Submodule Assembly

0.5 TPD O₂
Ceramic Processing Infrastructure

- Continuous Tapecaster
- "Green" Tape
- High Speed Laser Cutter
- Lamination and Cutting Operations
Ceramic Processing Infrastructure

Multiple-wafer firing operations

- Have made 1000’s of commercial-size wafers since 2000
Technical Risk Reduction Through Phase II

Machinery Integration: optimize the integration of ITM Oxygen with rotating equipment

- Siemens Westinghouse Power Corporation joined ITM Oxygen development team in 2003

Four-part Statement of Work
1) identify integration issues and solution paths
2) develop conceptual designs
3) estimate nth unit costs
4) estimate development costs

- Reviewing IGCC case for optimum integration with W501G gas turbine
 - No major roadblocks have been identified in cases with >50% air extraction (consistent with target cost reduction)
Technical Risk Reduction Through Phase II

Local Performance: achieve target oxygen flux and purity

✓ Wafers consistently make target flux since 2000
✓ Oxygen purity consistently exceeds 99%

Lifetime: ensure material stability over operating life

✓ Material creep life exceeds 10 years
✓ Excellent sulfur tolerance demonstrated
 (e.g., IGCC study includes MDEA unit for S-removal)
Technical Risk Reduction Through Phase II

Reliability: achieve ITM Oxygen plant availability typical of cryogenic oxygen plants

- Demonstrated steady flux for over 5000 hours
- Developing materials database and reliability-assessment approach for ceramic devices
- Developing advanced control techniques to minimize stresses in ceramic modules

Safety: “Nothing is more important”

- Identified safe alloys for use in handling hot oxygen
- All risks have been addressed in pilot scale work
1-5 TPD Pilot Demonstration

- Demonstrates operation with multiple commercial-scale devices
- Addresses all key risk factors except machinery integration
- Mid-2005 Start-up

ITM Oxygen Membrane Vessel

Thermal Analysis of Flow Duct

© Air Products and Chemicals, Inc. 2004
Pilot scale vessel is a prototype for commercial scale concept
Conceptual 2000 TPD ITM Oxygen Vessel
Commercialization Pathway for ITM Oxygen

Expected timing:
- Near-term: adding commercial partners
- Complete existing development program in 2008
- Build first commercial-scale units in 2009 (100’s TPD) (pipelines, small co-produced power applications, etc.)
- Ready to serve the IGCC and power generation markets toward the end of the decade
Acknowledgment: DOE/NETL

This paper was written with support of the U.S. Department of Energy under Contract No. DE-FC26-98FT40343. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper.

Disclaimer

A significant portion of this report was prepared by Air Products and Chemicals, Inc. pursuant to a Cooperative Agreement partially funded by the United States Department of Energy, and neither Air Products and Chemicals, Inc. nor any of its contractors or subcontractors nor the United States Department of Energy, nor any person acting on behalf of either:

1. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

2. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Department of Energy.
tell me more

www.airproducts.com

ITM@airproducts.com