Co-Production of Fuel Alcohols & Electricity via Refinery Coke Gasification

Ravi Ravikumar & Paul Shepard

October 15, 2003

Gasification Technologies 2003 Conference
San Francisco, CA
Study Objectives

- Evaluate the concept of producing synthetic mixed alcohols which may be suitable for gasoline blending using petroleum coke gasification as feedstock in a refinery setting

- Present overall plant performance data and project economics for co-production of fuel alcohols and electricity for a large facility at a typical Gulf Coast refinery
Topics

- Overview of Potential Gasification Products
- Mixed Alcohols Synthesis Process (PEFI)
- Features of Fuel Alcohols Co-Production
- Mixed Alcohols Synthesis Unit
- Integrated Configuration
- Study Parameters
- Plant Performance
- Economic Evaluation
- Discussion of Results
Potential Gasification Feeds and Products

Potential Feeds
- Natural gas
- Residual oils
- Orimulsion
- Petroleum coke
- Coal
- Waste Oils
- Biomass
- Black liquor
- Sewage Sludge

Gasification Plant
- Slag for Construction Materials

Combined Cycle
- Electric Power
 - Hydrogen
 - Carbon Monoxide
 - Fertilizer (Urea, ammonium nitrate)
 - SNG
 - Industrial Chemicals
 - Methanol, Higher Alcohols
 - Acetic Acid
 - Naphtha
 - Diesel
 - Jet Fuel
 - Wax

Chemical Production

Fischer-Tropsch Synthesis

Potential Products
- Oxygen
- Nitrogen
- Argon
- Carbon Dioxide
- Sulfur/Sulfuric Acid
- Steam

© Copyright 2003 Fluor Enterprises, Inc. All Rights Reserved
Mixed Alcohols Synthesis Process

- Process developed by Power Energy Fuels, Inc. (PEFI) of Denver, CO
- Ecalene™ is PEFI’s trade name for mixed alcohols blending stock ((R+M)/2) of approximately 124 as tested
- Ecalene adds oxygen to gasoline required by federal mandates and provides a potentially attractive octane blending compound
- Fluor developed a plant design for a mixed alcohols demonstration unit for the Texaco Cool Water Gasification Project (not constructed)
Reactions for the Synthesis of Alcohols

Alcohols Synthesis

\[(n+1)\, \text{H}_2 + (2n-1)\, \text{CO} = C_n\text{H}_{2n+1}\text{OH} + (n-1)\, \text{CO}_2\]

Shift Conversion

\[\text{CO} + \text{H}_2\text{O} = \text{CO}_2 + \text{H}_2\]
Hydrogen to CO Ratio

<table>
<thead>
<tr>
<th>Product</th>
<th>H₂/CO Stoichiometric Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>2.0</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>(Full Shift)</td>
</tr>
<tr>
<td>F-T Liquids</td>
<td>2.0</td>
</tr>
<tr>
<td>Ammonia</td>
<td>(Full Shift)</td>
</tr>
<tr>
<td>Ethanol</td>
<td>1.0</td>
</tr>
<tr>
<td>Propanol</td>
<td>0.8</td>
</tr>
<tr>
<td>Butanol</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Features of Fuel Alcohols Co-Production

- The synthesis catalyst is sulfur tolerant making syngas cleanup simpler and less expensive.
- Propanol can be separated for sale as a higher value chemical if market exists.
- Methanol yield is relatively small compared to ethanol production.
- Separated methanol can be utilized as a peak fuel in a stand-alone gas turbine (can be enhanced with a chemical recuperation cycle).
Features of Fuel Alcohols Co-Production (continued)

- High alcohols produced can be used on-site for gasoline blending avoiding transportation and large storage costs
- Alcohol mixture produced has been registered with the EPA as a gasoline and diesel additive
- Production of carbon containing fuel ethanol is an indirect method of carbon capture
Mixed Alcohols Synthesis Unit

Clean Syngas
- CO: 18,380 mol/h
- H2: 18,380 mol/h

MIXED ALCOHOLS SYNTHESIS UNIT

Fuel Gas
- CO: 4,100 mol/h
- H2: 4,900 mol/h
- CO2: 5,500 mol/h
- C1-C4: 890 mol/h

Mixed Alcohols
- Methanol: 95 ST/D
- Ethanol: 1,200 ST/D
- Propanol: 490 ST/D

Steam

BFW
Integrated Gasification Configuration for Co-Production of Power & Mixed Alcohols

- Petroleum Coke Feedstock
- Process Units
 - Air Separation Unit
 - Gasification
 - CO Shift and Heat Recovery
 - Sulfur Recovery Unit
 - Mixed Alcohols Synthesis Unit
 - Fractionation
 - Methanol Storage & Evaporator
 - Power Block (1 x GE 7FA+e combustion turbine)
Block Flow Diagram
Electrical Power Production with Mixed Alcohols Synthesis

NOTES:
- BFW = BOILER FEEDWATER
- CO = CARBON MONOXIDE
- CWS = COOLING WATER SUPPLY
- CWR = COOLING WATER RETURN
- H₂ = HYDROGEN
- HP = HIGH PRESSURE
- N₂ = NITROGEN
- O₂ = OXYGEN

© Copyright 2003 Fluor Enterprises, Inc. All Rights Reserved
Study Parameters

- Location: Typical US Gulf Coast Refinery Site
- ISO Site Conditions
 - 59°F DB/ 60% RH
 - Barometric Pressure: 14.7 psia
- Cooling Water System: Mechanical Draft Cooling Tower
Petroleum Coke Analysis

<table>
<thead>
<tr>
<th>Ultimate Analysis, Wt%</th>
<th>Dry Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>89%</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>4%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1%</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1%</td>
</tr>
<tr>
<td>Sulfur</td>
<td>5%</td>
</tr>
<tr>
<td>Ash</td>
<td>< 1%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HHV (Dry Basis)</th>
<th>Btu/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15,160</td>
</tr>
</tbody>
</table>
Overall Performance Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>IGCC w/Mixed Alcohol Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
<td></td>
</tr>
<tr>
<td>Coke Feed Rate st / day (dry)</td>
<td>4,758</td>
</tr>
<tr>
<td>MMBtu/h (HHV)</td>
<td>6,012</td>
</tr>
<tr>
<td>MMBtu/h (LHV)</td>
<td>5,871</td>
</tr>
<tr>
<td>Power Generation</td>
<td></td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>1 x 7FA+e</td>
</tr>
<tr>
<td>Net Output MW</td>
<td>265</td>
</tr>
<tr>
<td>Mixed Alcohols Production(^{(1)})</td>
<td></td>
</tr>
<tr>
<td>Ethanol bbl / day</td>
<td>8,886</td>
</tr>
<tr>
<td>Propanol bbl / day</td>
<td>3,512</td>
</tr>
<tr>
<td>Total bbl / day</td>
<td>12,398</td>
</tr>
</tbody>
</table>

\(^{(1)}\) 700 bbl/day of Methanol is also produced and utilized in the gas turbine.
Product Pricing Summary

<table>
<thead>
<tr>
<th>Material</th>
<th>$ / lb</th>
<th>$ / MMBtu (LHV)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>$0.17</td>
<td>$14.9</td>
<td>$1.15/gal (w/o subsidy and w/partial credit for octane enhancement)</td>
</tr>
<tr>
<td>Propanol (as chemical)</td>
<td>$0.40</td>
<td>$28.2</td>
<td>$2.70 /gal</td>
</tr>
<tr>
<td>Propanol (as fuel)</td>
<td>$0.21</td>
<td>$14.9</td>
<td>Same $/MMBtu as EtOH</td>
</tr>
<tr>
<td>Methanol</td>
<td>$0.11</td>
<td>$13.0</td>
<td>$0.72/gal (if sold, burned as fuel)</td>
</tr>
<tr>
<td>Ammonia</td>
<td>$0.09</td>
<td>$11.2</td>
<td>$170 / ton</td>
</tr>
<tr>
<td>SNG</td>
<td>-</td>
<td>$5.0</td>
<td>(HHV) Henry Hub</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>-</td>
<td>$9.8</td>
<td>$2.7 / MSCF when nat gas is at $5/MMBtu (HHV)</td>
</tr>
<tr>
<td>F-T Liquids</td>
<td>$0.16</td>
<td>$8.9</td>
<td>$1.0/gal</td>
</tr>
<tr>
<td>Electricity (Wholesale)</td>
<td>-</td>
<td>$12.9</td>
<td>4.4 cents/kWh at 3,413 Btu/kWh</td>
</tr>
</tbody>
</table>
Economic Evaluation

◆ Economic Parameters
 – 100% Equity Assumed
 – Wholesale Cost of Electricity: 4.4 cents/kWh
 – Retail Cost of Electricity: 5.0 cents/kWh
 – Price of Ethanol: $1.15/gal
 – Price of Propanol (as chemical): $2.70/gal
 – Tax Rate: 40%
 – Annual Escalation: 3%

◆ Sensitivity Cases
 – All Alcohols at the Same $/MMBtu as Ethanol
 – Alcohols at the Individual Prices
Economic Results

<table>
<thead>
<tr>
<th>Case</th>
<th>After Tax Return on Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Alcohols at Same $/MMBtu as Ethanol</td>
<td>15.2%<sup>(1)</sup></td>
</tr>
<tr>
<td>Alcohols at the Individual Prices</td>
<td>15.8%<sup>(2)</sup></td>
</tr>
</tbody>
</table>

Notes:

1. Base Case with price of Ethanol at $1.15/gal and Propanol the same $/MMBtu as Ethanol with wholesale power price of 4.4 cents/kWh.
2. Price of Ethanol assumed at $0.75/gallon and Propanol at $2.70/gallon with wholesale power price of 4.4 cents/kWh.
After Tax ROI Sensitivity to Electricity Price
All Alcohols at the Same $/MMBtu as Ethanol

Ethanol Price per Gallon

Return on Investment

- 3.5 cents/kWh
- 4.4 cents/kWh
- 5.0 cents/kWh

Ethanol Price per Gallon: $0.90, $1.15, $1.40

Return on Investment: 12.0%, 13.0%, 14.0%, 15.0%, 16.0%, 17.0%, 18.0%, 19.0%
After Tax ROI Sensitivity to Ethanol Price
Alcohols at the Individual Prices

- 3.5 cents/kWh
- 4.4 cents/kWh
- 5.0 cents/kWh

Ethanol Price per Gallon

Return on Investment

© Copyright 2003 Fluor Enterprises, Inc. All Rights Reserved
Discussion of Results

- Ethanol, produced with higher alcohols, may be blendable with both gasoline while meeting oxygenate requirements
- Co-production of alcohols and electricity appears to be economically feasible in the Gulf Coast
- Propanol as a chemical by-product improves economics (if a sufficient market exists)
- Ethanol production provides a good synergy in a refinery setting
Disclaimer

This presentation was prepared by Fluor Enterprises, Inc. and based in part on information not within our control. While we believe that the information contained, in the context presented, is reliable, Fluor Enterprises, Inc. does not guarantee the accuracy of it. The use of such information is at the user’s sole risk and shall constitute a release and agreement to indemnify Fluor Enterprises, Inc. from and against any and all liability in connection therewith, whether arising out of Fluor Enterprises, Inc.’s negligence or otherwise.