Agenda

- Oil Sands Processing Challenges
- Upgrading Considerations
- Syngas Treating and Processing Solutions
- Incremental Hydrogen Studies
- Integrated Flowscheme Examples
Oil Sands Processing Challenges

- Processing Strategy
 - Targeted product slate
 - Residue conversion approach
 - Hydroprocessing severity

- Project Challenges
 - Total costs
 - Hydrogen requirements and sources
 - Energy demands

- CO₂ Management
 - Current or future considerations
Bitumen Upgrading
Typical Flow-Scheme

- Distillation
 - Naphtha
 - Diluted Bitumen
 - Distillates / Gas Oils
 - Residues
 - Unconverted Residues

- Hydroprocessing
 - Hydrogen
 - Synthetic Crude

- Residue Upgrading
 - Natural Gas
 - Steam Methane Reforming
 - PSA
 - Tail Gas

UOP Technologies
Bitumen Upgrading with Gasification

Flow-Scheme

Distillation

Diluted Bitumen

Residues

Unconverted Residues

Gasification

Distillates / Gas Oils

Hydroprocessing

Synthetic Crude

Hydrogen

Acid Gas

Tail Gas

UOP Technologies
Hydrogen Balance
A Key to Upgrading Success

- Knowing how much and where to put hydrogen
- How to produce low cost Hydrogen
- Integrating both consumers and producers of hydrogen
Knowing how much and where to put Hydrogen Impacts:

- Integration Opportunities
 - Product Quality Selection and Flexibility
 - Capital Costs
 - Operating Costs
UOP Integrated Hydroprocessing Flow-Scheme

Vacuum Gas Oil

Distillates

Deasphalted Oil

Hot Separator

Reactor

Hot Separator with Post-Treat Bed

Cold Separator

Hot Flash Drum

Cold Flash Drum

Hot Flash Drum

Amine Scrubber

Recycle H2

Make-up H2

H2 Recovery

Synthetic Crude or Finished products

Distillates

Deasphalted Oil

Vacuum Gas Oil

Make-up H2
A Typical Gasification Complex Can Produce Steam, Power, and Hydrogen

- **Gasification**
 - Residue Feed Stock
 - Produces H$_2$S, H$_2$, CO, CO$_2$

- **Gas Cooling & CO Shift**
 - CO$_2$

- **Syngas treating & Separation**
 - H$_2$S, H$_2$, CO, CO$_2$
 - O$_2$

- **Air Separation Unit**
 - Produces H$_2$, CO, CO$_2$, N$_2$

- **Claus Sulfur Plant**
 - Produces Sulfur

- **Combined Cycle Unit**
 - Produces Power, Steam
Regions of Use for Acid Gas Technologies

- Benfield™ Process
- Amine Guard™ FS Process
- MOLSIV™ Scavengers
- Polybed™ PSA
- Selexol™ Process
- Separex™ Membrane
Syngas Treating Technologies

Partial pressure of acid gas in feed, psia

Partial pressure of acid gas in product, psia

Amine Guard™ FS Process

Selexol™ Process

0.001 0.01 0.1 1.0 10 100

0.1
What is the Selexol Process?

- Absorption/regeneration process for selective removal of H₂S, COS, & CO₂
 - Physical solvent
 - Typical solvent-extraction flow-scheme
- Product Quality
 - Can be essentially sulfur free
 - Project specific CO₂ slip or capture
 - Project specific acid gas H₂S concentration
Selexol Process
Hydrogen Production Flow-Scheme

CO₂ Absorber

H₂S Absorber

Raw CO₂

Acid Gas Enrichment

Stripper

Export Water

Feed Gas

Raw H₂

Acid Gas
Selexol Process
Commercial Experiences

- **56 operating units**
 - Both Natural Gas and Gasification applications

- **Recent Gasification Applications**
 - Sarlux IGCC - Sardinia, Italy
 - API IGCC – Falconara, Italy
 - Coffeyville Resources NH₃/UAN - USA
 - Syngas treating - Alberta, Canada

- **Coal to Power Applications**
 - US location
 - Presently being designed for multiple Units
Hydrogen Balance
A Key to Upgrading Success

- Knowing how much hydrogen is needed
- How to produce low cost Hydrogen
- Integrating both consumers and producers of hydrogen
For Increased Hydrogen Production Requirements

- CO shift added on syngas:
 - Increased hydrogen
 - Increased CO₂

- CO₂ Absorber included in Selexol
 - CO₂ recovered at high pressure
 - Minimizes CO₂ content of treated gas

- Reduces PSA Size
 - Minimizes tail gas
Gasification for Power and Hydrogen Production

- Gasifier with Quench & Scrubbing
- Air Separation Unit
- Gas Cooling & COS Hydrolysis
- Selexol
- Claus Plant
- Polybed PSA
- Polysep Membrane

Flow:
- Feed → Gasifier with Quench & Scrubbing
- Air to Air Separation Unit
- O₂ to Gas Cooling & COS Hydrolysis
- Purified Syngas to Combined Cycle Power Plant
- High Purity Hydrogen
- Raw Hydrogen
- Electric Power
- Steam for Export
- Tail Gas
- Elemental Sulfur

UOP 4375F-12
Syngas Treating/Separation
Relative Hydrogen Production

% recovery of available H_2

Unshifted Gas Shifted Gas

IGCC Application H2 + Low Press Fuel H2 + Med Press Fuel High H2 Max H2
Syngas Treating/Separation Relative Opex

Unshifted Gas vs. Shifted Gas

- IGCC
- H2 + Low Press Fuel
- H2 + Med Press Fuel
- High H2
- Max H2

Opex levels range from 0 to 3.
Purification Options Implications

<table>
<thead>
<tr>
<th></th>
<th>PSA (Conventional)</th>
<th>PSA with (Tail Gas Recycle)</th>
<th>Methanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Recovery</td>
<td>88-90%</td>
<td>98%</td>
<td>97-98%</td>
</tr>
<tr>
<td>Hydrogen Purity</td>
<td>99.9</td>
<td>99.3</td>
<td>97%</td>
</tr>
<tr>
<td>Impact on Hydrocracker Catalyst Volume</td>
<td>Base</td>
<td>+5%</td>
<td>+20%</td>
</tr>
<tr>
<td>Impact on Hydrocracker Pressure</td>
<td>Base</td>
<td>+2%</td>
<td>+10%</td>
</tr>
</tbody>
</table>
Hydrogen Balance
A Key to Upgrading Success

- Knowing how much hydrogen is needed
- How to produce low cost Hydrogen
- Integrating both consumers and producers of hydrogen
Upgrading and Gasification
Conventional Hydrogen Supply Flowscheme

Distillates / Gas Oils

Residues

Residue Upgrading

Unionfining Unicracking

Gasification

CO Shift

Selexol

Syngas Polybed PSA

Plant Polybed PSA

Flash Gas

High Purity H₂

To Plant Fuel System

Synthetic Crude / Refined Fuels

Rich Acid Gas

CO₂ Rich Tail Gas

UOP 4446I-43
Purification Options Implications

<table>
<thead>
<tr>
<th></th>
<th>PSA (Conventional)</th>
<th>PSA with Tail Gas Recycle</th>
<th>Methanation</th>
<th>PSA (Integrated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Recovery</td>
<td>88-90%</td>
<td>98%</td>
<td>97-98%</td>
<td>96-98%</td>
</tr>
<tr>
<td>Hydrogen Purity</td>
<td>99.9</td>
<td>99.3</td>
<td>97%</td>
<td>99.9</td>
</tr>
<tr>
<td>Impact on Hydrocracker Catalyst Volume</td>
<td>Base</td>
<td>+5%</td>
<td>+20%</td>
<td>Base</td>
</tr>
<tr>
<td>Impact on Hydrocracker Pressure</td>
<td>Base</td>
<td>+2%</td>
<td>+10%</td>
<td>Base</td>
</tr>
</tbody>
</table>

Value of Integrated Approach
Summary

- Integrated solutions provide the best opportunities to maximize margins
- UOP’s Hydroprocessing technologies offer unique and optimal solutions to meet product objectives
- UOP has the complete technology package for syngas treating, hydrogen recovery and purification
- UOP has commercial experience for gasification applications
Technology Integration to Maximize Value of Oil Sands Products

Gasification Technology Conference

October 3, 2006
Washington DC

Thanks for your time and attention