ANDRITZ Company Profile

Business Groups

<table>
<thead>
<tr>
<th>ANDRITZ Hydro</th>
<th>ANDRITZ Pulp & Paper</th>
<th>ANDRITZ Metals</th>
<th>Environment & Process</th>
<th>ANDRITZ Feed & Biofuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromechanical equipment for hydropower plants; pumps; turbo generators.</td>
<td>Plants for production of all types of pulp and certain paper grades.</td>
<td>Plants for production and processing of stainless steel and carbon steel strips.</td>
<td>Equipment for mechanical and thermal solid/liquid separation.</td>
<td>Plants for production of animal feed and wood/biofuel pellets.</td>
</tr>
</tbody>
</table>

[Image of ANDRITZ equipment and carbon cycle]
ANDRITZ Pulp & Paper
Recovery and Power Division / Bioenergy Systems

Recovery and Power Division

- Recovery Boilers
- Evaporators
- Bioenergy Systems
 - BFB Boilers
 - Gasifiers
- Steam Generators and Plants
 - BFB, CFB & Industrial Boilers

Synthesis Gas Production from Biomass
ANDRITZ Carbona biomass gasification Technologies and applications

<table>
<thead>
<tr>
<th>Fuel gas for kilns</th>
<th>(Co-)firing (boiler)</th>
<th>Co-generation (gas engine)</th>
<th>IGCC (gas turbine)</th>
<th>Syngas production</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-100 MWth.</td>
<td>10-150 MWth.</td>
<td>10-50 MWth.</td>
<td>30-200 MWth.</td>
<td>150-200 MWth/unit</td>
</tr>
<tr>
<td>35-350 MMBtu/h</td>
<td>35-510 MMBtu/h</td>
<td>35-170 MMBtu/h</td>
<td>100-700 MMBtu/h</td>
<td>500-700 MMBtu/h</td>
</tr>
<tr>
<td>Atmospheric CFB</td>
<td>Atmospheric CFB</td>
<td>Pressurized BFB (LCV gas; air blown)</td>
<td>Pressurized BFB (LCV gas; air blown)</td>
<td>Development phase</td>
</tr>
<tr>
<td>Fossil fuel replacement</td>
<td>Power by steam cycle</td>
<td>Power by gas engines</td>
<td>Power by gas/steam turbines</td>
<td></td>
</tr>
</tbody>
</table>

- **Pulp and paper and cement industries**
- **Utilities and all industries with large fossil fuel fired boilers**
- **Municipal utilities**
- **New mid-size power plants with max power**
- **BTL producers (P&P & others) and utilities**

- **Fuel gas**
- **Green power**
- **Green power**
- **Green power**
- **Bio liquids**
BFB gasification technology basis
Low Calorific Value gas for power generation
Gasification / gas engine CHP plant in Skive, Denmark
Skive Gasification CHP Plant
Main parameters & equipment

Biomass feed 20 MWth (66 MMBtu/h)
Designed for 28 MWth (95 MMBtu/h)
Power 6.0 MW (3x2MW GEJ620 gas engines)
District heat as CHP 11.5 MW / 39 MMBtu/h
Optionally 2x10 MW / 34 MMBtu/h gas boilers
Load range 50-130%
Feedstock: Wood pellets & wood chips
Skive Gasification CHP Plant
Process & product gas

- **Gasification plant process:**
 - Air blown, low pressure BFB gasifier
 - Limestone based bed material
 - Catalytic tar reforming
 - Gas cooling and filtration
 - Gas scrubbing
 - System pressure 0.5 – 2 bar / 7-29 psi

- **Typical dry gas composition** after reformer:
 - CO %-vol 20
 - CO2 %-vol 12
 - H2 %-vol 16
 - CH4 %-vol 4
 - N2 balance
 - LHV MJ/m3n 4.8 – 5.2
 - Btu/scf 122-132
Skive Gasification CHP Plant
Gas composition & operation pressure

- Gasifier temperature
- CO
- H2
- CO2
- Gas LHV
- Gasifier pressure
- CH4

Synthesis Gas Production from Biomass
Low Calorific Value Gas for Power Generation

IGCC technology

- High-efficiency Biomass Based Power Generation
- Basic concept:
 - Pressurized air-blown BFB gasifier (20 bar / 290 psi)
 - Hot gas cleaning by filtration (300-500 °C / 570-950 °F) and gas cooling integrated steam cycle
 - Gas turbine with air extraction and burner for high temperature LCV gas (LHV 5 MJ/m³n / 130 Btu/scf)
- New or existing steam cycle for integration, repowering
- Biomass IGCC plant components are of conventional technology
- IGCC process is demonstrated in smaller scale
Pressurized Gasification Pilot Plant for IGCC development
Operated by Carbona Tampere, Finland

80 tpd, 22 bar /310 psi, 3850 test hours
Synthesis gas for transportation fuels and SNG
Oxygen blown BFB gasification

Typical plant size: 150 MWth (510 MMBtu/h), ~ 1000 tpd feedstock @ 20% moisture,
Multiple plants for higher capacities
Syngas for BTL and SNG production

Project development

ANDRITZ Carbona cooperates with
GTI & Haldor Topsøe A/S
for the
Biodiesel project of UPM –Kymmene Finland
SNG project E.ON Sweden

Pilot Plant Testing at GTI

- Further develop pressurized oxygen/steam gasification of biomass at the 5 MWth / 17 MMBtu/h gasification pilot plant
- Develop tar reforming and gas clean up of syngas for BTL and SNG applications at the recently built gas cleanup facility
- Test campaigns from June 2008 to October 2011.
- Four feedstock types (3 from Finland, 1 from USA) tested at different operating conditions.
BTL tests at GTI
Test results gasification plant

- Stable operating conditions for steam-oxygen BFB gasification
- High carbon conversion
- Replacement of nitrogen with CO2 inert gas tested
- Recycle of scrubbed product gas tested
- 2nd stage fines recycling to be tested
- Required design data collected
Catalytic Tar Reformer
Concept & performance in BTL tests at GTI

Catalytic Tar Reformer Development with Haldor Topsøe A/S for:
- Reforming tars & lighter hydrocarbons
- Controlled reforming of methane
- Reducing ammonia in reformed gas

Catalytic Tar Reformer Concepts:
- “Dirty reformer” for dust containing gas
- “Clean reformer” for filtered gas
- Both concepts tested and demonstrated (GTI, Skive CHP Plant)

Catalytic Tar Reformer Performance (Example test result/GTI. Tar measurement by ETP Method)

<table>
<thead>
<tr>
<th>Component</th>
<th>Reforming efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>96</td>
</tr>
<tr>
<td>Toluene</td>
<td>100</td>
</tr>
<tr>
<td>Ethyl benzene</td>
<td>100</td>
</tr>
<tr>
<td>Phenol</td>
<td>100</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>98</td>
</tr>
<tr>
<td>Higher MW Compounds</td>
<td>95</td>
</tr>
</tbody>
</table>
BTL Tests at GTI
Syngas processing & cleanup performance

- H2/CO: 1 to 1.5 (adjustable)
- CH4: 0.5 to 5.0 vol% (adjustable)
- CO2+H2S: removed by final user
- NH3+HCN: <10 ppmv
- C2+ hydrocarbons: <200 ppmv
- C6 compounds: <100ppmv
- Heavier CxHy compounds: <5 ppmv
- Alkalis: none
- Halides: none
UPM-Kymmene Biodiesel Project
1 MMt/a wood to 150 000 t/a (48 MM US gal/a) biodiesel

Fuel Pre-treatment
- Wood Based Fuel
 - ~1 Million t/a
 - Receiving & Crushing
 - Drying & Pelletizing

Syngas Process
- Gasification
- Initial Gas Conditioning
- Gas Processing
 - Product Upgrade
 - Distribution 150 000 t/a

FT & Refining & Distribution
- Ultra Purification
- FT Synthesis

(source, UPM)
E.ON Bio2G project
950 000 t/a wood to 168 MMm³/a (6000 MMSCF/a) SNG

(source, EGD)

Synthesis Gas Production from Biomass
Project for green gasoline from wood using Carbona gasification and Topsøe TIGAS processes

American Recovery and Reinvestment Act: Demonstration of integrated bio refinery operations

Target:
- Demonstration of Thermochemical Conversion of Woody Biomass to Gasoline at GTI’s Pilot Plant (FFTF / AFTF)
- Plant fuel feed 24 ton/day of woody biomass to produce 23 BPD of gasoline

Project Team:
- Haldor Topsøe A/S
- Andritz Carbona
- UPM-Kymmene Oy
- ConocoPhillips
- GTI

Synthesis Gas Production from Biomass
Any questions?

For further information please contact:
Andras Horvath / Carbona Inc. – Finland
+358 40 8606503

andras.horvath@andritz.com
Legal Disclaimer

All data, information, statements, photographs, and graphic illustrations contained in this presentation are without any obligation to the publisher and raise no liabilities to ANDRITZ AG or any affiliated companies, nor shall the contents in this presentation form part of any sales contracts, which may be concluded between ANDRITZ GROUP companies and purchasers of equipment and/or systems referred to herein.

© ANDRITZ AG 2011. All rights reserved. No part of this copyrighted work may be reproduced, modified or distributed in any form or by any means, or stored in any database or retrieval system, without the prior written permission of ANDRITZ AG or its affiliates. Any such unauthorized use for any purpose is a violation of the relevant copyright laws.