Advanced Hydrogen and CO₂ Capture Technology for Sour Syngas

Air Products and Chemicals, Inc.
Jeffrey Hufton, Timothy Golden, Robert Quinn, Jeffrey Kloosterman, Charles Schaffer, Reed Hendershot and Kevin Fogash

Air Products PLC
Andrew Wright and Vince White

Gasification Technology Council
Gasification Technology Conference
Oct 31st – Nov 3rd
Washington, D.C.
Air Products provides technology to capture CO₂ from fossil-fuel-based processes

Hydrogen production from natural gas with CO₂ capture

- For power generation, vehicle fuels, refinery applications

Oxyfuel technology for pulverized coal boilers

- Amenable to both new-build supercritical power plants and retrofitting the large installed base of existing coal-fired assets

CO₂ capture from gasification

- Integrated CO₂ capture and acid gas removal

Advanced separation technology

- CO₂ technology using membranes, adsorption, absorption and cryogenic systems
Simplified Gasification Flowsheet for H\textsubscript{2} Production and CO\textsubscript{2} Capture

- "Conventional" Route
 - Bulk AGR
 - Polishing PSA
 - CO\textsubscript{2} and H\textsubscript{2}S separated
 - Tailgas philosophy

- Acid Gas Removal
 - Physical solvents
 - Multi-column, multi-flash process
 - Heat integration
 - Minimizing cooling load
 - Manage impurities

From Gasifier

Water Gas Shift

Cooling -40 to 32 °F
Air Products' "Sour PSA" Technology for H_2 Production and CO_2 Capture

- Improved route
- Single step purification
- Based on existing PSA technology
- Designed to meet H_2 purity
 - High Purity H_2
 - Lower purity for power
 - Sulfur slip of < 3 ppmv, can design for ppb applications
- Reduced capital and operating cost
- Reduced cooling duty, no chilling or refrigeration
- CO_2 and H_2S rejected in tailgas
Tailgas Disposition and Integration

Sour PSA

H₂

GTCC

H₂S

CO₂

Air

N₂

HRSG

Exhaust

Combustor

O₂

SOₓ

NOₓ

Q

CPU

HNO₃

H₂SO₄

Vent

CO₂
Sour PSA Technology Development

- Passive Adsorbent Testing (EERC)
- Build Mobile PSA
- Coal Testing (EERC)
- Alternative Flowsheet Development
- Petcoke Testing (EERC)

- Screening by H$_2$S exposure tests
- Preliminary characterization
- Selection for additional testing
Sour PSA Technology Development

- Passive Adsorbent Testing (EERC)
- Build Mobile PSA
- Coal Testing (EERC)
- Alternative Flowsheet Development
- Petcoke Testing (EERC)

Flexible arrangement: PSA or TSA
- Proof of concept on actual syngas
- Adjust operational parameters
- Advanced characterization
- Enabled rapid model development
- Multiple feedstocks

Supporting text:

- Supported by Alberta Innovates Energy and Environment Solutions

Image descriptions:
- Passive Adsorbent Testing (EERC) setup.
- Build Mobile PSA equipment.
- Coal Testing (EERC) facility.
- Alternative Flowsheet Development
- Petcoke Testing (EERC) station.
H₂S Capacity Stabilizes

- **Fresh adsorbent**
- **Bed A 1st load**
- **Bed A 2nd load**
- **Bed B 1st load**
- **Bed B 2nd load**

The graph shows the H₂S capacity (mmole/g) over the number of cycles. The capacity stabilizes at approximately 1 mmole/g after several cycles for both beds A and B.
Sour Combustor Development

- **Design Basis**
 - Oxy-Tailgas burner
 - Leverage off oxy-fuel combustion expertise
 - Single or multiple burners
 - Housed in a fired heater or package boiler

- **Status**
 - Designed and tested prototype burners
 - Conducted tests with H₂S laden stream
 - Stability map established
 - Performance mapping underway
Reactive purification technology
- High pressure NOx catalyzed oxidation of SO₂ to H₂SO₄ acid
- Further purification to remove water and inerts
- Flowsheets for storage or EOR grade CO₂ applications

Originally developed for oxycoal power boiler applications
- Currently in the pilot phase of development

Extended for sour combustion flue gas
Techno-Economic Benefits

<table>
<thead>
<tr>
<th>Case</th>
<th>Units</th>
<th>High Purity H₂</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Base</td>
<td>Sour PSA</td>
</tr>
<tr>
<td>Petcoke Input</td>
<td>MT/d</td>
<td>4,000</td>
<td>4,000</td>
</tr>
<tr>
<td>H₂ Produced</td>
<td>kNm³/hr MMSCFD</td>
<td>305</td>
<td>299</td>
</tr>
<tr>
<td>Power Produced</td>
<td>MWₙₑᵗ</td>
<td>279</td>
<td>273</td>
</tr>
<tr>
<td>% CO₂ Captured</td>
<td></td>
<td>~95%</td>
<td>>99%</td>
</tr>
<tr>
<td>Capital Savings</td>
<td>Millions USD$</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Operating Savings</td>
<td>Millions USD$/yr</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Reduction in CO₂ Capture Cost</td>
<td></td>
<td>25.2%</td>
<td></td>
</tr>
</tbody>
</table>
Summary and Conclusions

- Air Products is developing a proprietary low-cost CO₂ capture option for pre-combustion systems
 - Applicable to H₂ and power production

- The technology consists of:
 - H₂ PSA adapted to handle sour syngas
 - Low-BTU oxyfuel burner
 - SOₓ, NOₓ, and inert removal system developed by Air Products for oxyfuel coal combustion

- Potential advantages over the state of the art:
 - Lower capital and operating costs
 - 25 % reduction in the cost of CO₂ capture
 - Feasible to achieve ~100 % CO₂ capture rate
Scale-Up Pathway

H₂S/CO₂ → PSA → H₂ Product
Sour Syngas [H₂S+CO₂] → CO₂
O₂ → [Q]

Design of pilot plant

Lab scale Gasifier / PSA
Adsorbent life tests

EERC
Grand Forks, ND

AERI
Calgary, Canada

Grand Forks, ND

Pilot

EERC

AERI

Alberta Innovates Energy and Environment Solutions

Air Products
Thank you
tell me more
www.airproducts.com