The Future of the RFS and Its Impact on the Syngas Industry

A presentation for the Global Syngas Conference
Austin, TX | Tuesday, October 29, 2019 | 2:45 p.m.
Disclaimer

This presentation is for informational purposes only and is not intended to represent legal or financial advice. It is meant to spark discussion, not to be a comprehensive recitation of all relevant considerations.

You should contact your attorney or financial advisor to obtain advice with respect to any particular issue or problem.
Two Myths and a Truth

• The federal Renewable Fuel Standard dies after 2022.
• Syngas is not eligible to generate credits under the Renewable Fuel Standard.
• Getting a new pathway approved can be time-consuming . . . but far from impossible.
Overview

• History of RFS and RFS2
• RFS Mechanics
• Two Potential Routes for Syngas: Renewable Electricity
• Renewable Electricity Approval . . . in Theory
• Requirements in 2014 Rule
• Renewable Electricity Since 2014
• 2019 D3 RVO
• Statutory Volumes
• Market Overview
• Supply and Demand for Renewable Electricity under RFS
• Historical D3 RIN Prices
• Need for EPA Clarification
• Projected EV and FCV Markets
• Conclusion
History of RFS and RFS2

 - Section 210(o) of the Clean Air Act, 42 U.S.C. § 7545(o).

 - Regulations at 40 CFR Part 80, subpart M.

- Purpose: to **increase production** of clean renewable fuels and bolster the nation’s **energy independence and security**.
RFS Mechanics

• Requires refiners and importers of fossil transportation fuels to incorporate an increasing percentage of approved renewable fuels.

 • This increasing percentage = Renewable Volume Obligation (RVO)

 • Congressional targets v. EPA standards

 • Categories of RVO

• Obligated parties meet RVOs by physically blending renewable and fossil fuels (e.g., renewable ethanol in gasoline) or by purchasing and retiring renewable fuel credits called “Renewable Identification Numbers” (RINs).

 • Categories of RINs
RFS Mechanics

• Approved feedstock → approved process → approved fuel → transportation use.

 • Other permissible uses: certain home heating applications and jet fuel.

• “Renewable fuels” must come from “renewable biomass” (see definitions at 42 U.S.C. § 7545(o)(1)).

<table>
<thead>
<tr>
<th>Certain planted crops and crop residue</th>
<th>Trees from actively managed plantations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal waste materials and byproducts</td>
<td>Forestland slash and commercial thinnings</td>
</tr>
<tr>
<td>Biomass removed near bldgs. to prevent wildfire</td>
<td>Algae</td>
</tr>
<tr>
<td>Separated yard or food waste</td>
<td></td>
</tr>
</tbody>
</table>

• Must demonstrate greenhouse gas reductions versus fossil gasoline and diesel.
RFS Mechanics

• Producers must be registered to generate RINs (40 CFR § 80.1450).

 • Must submit detailed information about: feedstock, process flow, co-products, quantity, heat content, and percent efficiency of transfer (as applicable), and any conversion factors.

 • Copies of all contracts or affidavits tracking from generation to transportation use.

• Concern about fraud.
RFS Mechanics

<table>
<thead>
<tr>
<th>D-codes</th>
<th>Type</th>
<th>Greenhouse gas reductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Cellulosic biofuel</td>
<td>60%</td>
</tr>
<tr>
<td>4</td>
<td>Biomass-based diesel</td>
<td>50%</td>
</tr>
<tr>
<td>5</td>
<td>Advanced biofuel</td>
<td>50%</td>
</tr>
<tr>
<td>6</td>
<td>Renewable fuel</td>
<td>20%</td>
</tr>
<tr>
<td>7</td>
<td>Cellulosic diesel</td>
<td>60%</td>
</tr>
</tbody>
</table>

RFS Mechanics

![Renewable Fuel Standard Volumes by Year](chart.png)
Two Potential Routes for Syngas: Produce Electricity or H₂ for Fuel Cells

- Remember: key links are (1) renewable biomass feedstock; (2) reduced GHG lifecycle emissions compared to fossil baseline; (3) and transportation use.

- Likeliest uses for syngas:
 - Electricity production
 - H₂ production for fuel cells

- Eligible now: any syngas process that generates renewable electricity from biogas from –
 - landfills, municipal wastewater treatment facility digesters, agricultural digesters, and separated MSW digesters; cellulosic components of biomass processed in other waste digesters.

- Gasification currently approved to produce renewable gasoline, RBOB and naphtha from a variety of feedstocks, including separated municipal solid waste

- H₂ not currently approved, though EPA is considering approval of H₂ production from methane cracking and from steam methane reforming.
Renewable Electricity Approval

- In 2014 EPA approved as “cellulosic biofuel” renewable electricity produced from biogas from landfills, wastewater treatment sludge and animal manure.

- The rulemaking addressed the following:
 - Who is the “producer” and RIN generator?
 - **How to track** electricity from production to transportation use?
 - **What documentation** is required?
 - What about electricity produced from solid fuel biomass?
Requirements in 2014 Rule

- **No requirement to purchase** power or RECs.
 - “We have made the decision to match generation to use, and not require the purchase or definition of related environmental attributes.” 79 Fed. Reg. 421278, 42144 (July 18, 2014).
 - Participation in RFS does not preclude generation of RECs.

- **Affidavits sufficient** to prove use in transportation.
 - “These provisions allow for the use of signed affidavits It is assumed that these affidavits would be signed by fleet managers or vehicle operators, verifying the use of the renewable transportation fuel.” 79 Fed. Reg. 42128, 42144 (July 18, 2014).
 - But must show connection between sellers and users.

- Loaded & withdrawn from **physically connected transmission grid**.
- **Production matches consumption**.
- **No double counting**.
Since 2014 EPA has received many renewable electricity registration requests pursuant to 40 CFR § 80.1450. None approved to date.

EPA promulgated the proposed Renewables Enhancement and Growth Support (REGS) rule in late 2016. Instead of going case-by-case, EPA proposed to take comments on a systematic approach.

EPA extended comment period but has yet to take action on the rule.
Volume Standards as Set Forth in EISA [billion gallons]

EPA sets actual standards each November; standards below are as published in the Act

<table>
<thead>
<tr>
<th>Year</th>
<th>Conventional Renewable Fuels (D6)</th>
<th>Advanced Biofuels (D3, D4, D5)</th>
<th>Total Renewable Fuels (D3, D4, D5, D6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cellulosic Biofuel (D3)</td>
<td>Biomass-Based Diesel (D4)</td>
<td>Non-Cellulosic Advanced (D5)</td>
</tr>
<tr>
<td>2008</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>10.5</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>2010</td>
<td>12.0</td>
<td>0.1</td>
<td>0.65</td>
</tr>
<tr>
<td>2011</td>
<td>12.6</td>
<td>0.25</td>
<td>0.80</td>
</tr>
<tr>
<td>2012</td>
<td>13.2</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2013</td>
<td>13.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2014</td>
<td>14.5</td>
<td>1.75</td>
<td>1.0</td>
</tr>
<tr>
<td>2015</td>
<td>15.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2016</td>
<td>15.0</td>
<td>4.25</td>
<td>1.0</td>
</tr>
<tr>
<td>2017</td>
<td>15.0</td>
<td>5.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2018</td>
<td>15.0</td>
<td>7.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2019</td>
<td>15.0</td>
<td>8.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2020</td>
<td>15.0</td>
<td>10.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2021</td>
<td>15.0</td>
<td>13.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2022</td>
<td>15.0</td>
<td>16.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Approximately 227MM D3 RINs were generated in 2017.
2019 Renewable Volume Obligation for Cellulosic Fuels (D3 Market)

2019 Renewable Volume Obligation (in gallons)
- Cellulosic Biofuel (381 million)
- Biomass Based Diesel
- Advanced Biofuel
- Renewable Fuel
- Implied Conventional Biofuel

Cellulosic Biofuels with Electricity
- 2019 Cellulosic Obligation (381 million)
- Electricity (104 million)
Historical D3 RIN Prices
Projected EV and FCV Markets

- **Multiple factors** influence projected EV market: petroleum prices; technology improvements and cost reduction; government policy; consumer sentiment; etc.

- Various entities have tried to estimate the percentage of EVs under various scenarios.

- *Bloomberg New Energy* estimates **EVs** will account for about 4% of new car sales in US by 2021 and about 54% by 2040.

- **Grand View Research, Inc.** estimates that **US fuel cell vehicle sales** will surpass $1.75 billion by 2025.
Conclusion

• Despite 2014 rule approving the renewable electricity pathway, EPA has yet to register producers for e-RIN generation.

• As EVs become more prevalent, **e-RIN potential increases**.

• Renewable electricity produced from renewable biomass is poised to become significant market player.

• Growing fuel cell vehicle market will mean growing market for H_2.

• EPA is currently evaluating petitions for H_2 as an approved renewable fuel (from renewable biogas via steam methane reforming and via methane cracking). If approved, will set an important precedent for additional H_2 fuel pathways.