Methanol Economy Concept

- The late Dr. George Olah, Nobel Prize laureate, 1994, and his co-authors: “Beyond Oil and Gas: the Methanol Economy”, 2006.

- Key features of methanol economy as envisioned by Dr. Olah
 - Methanol is the primary energy carrier, instead of oil
 - It is liquid, versatile and low cost
 - Can be synthesized via a number of routes, including from CO₂.
 - It is reactive. A number of products can be made from it.
 - Can address GHG as part of “CO₂ looping”. Methanol is burned, CO₂ is captured and made into methanol.

- 50,000 liter/yr (< 1 bpd) pilot plant in Iceland, using geothermal energy.

- Methanol is substituting crude oil and products from crude in some applications.
Past Feedstock Prices
(constant 2017 dollars)

- Coal, bituminous averaged
- Gas, Citigate (to 1996) and Electric Power Price
- WTI Cushing
- Propane
- Methanol
- RBOB

Demand Substitution
Demand Substitution

- When oil (and downstream products from it, like gasoline, diesel, plastics, fibers, functional fluids) is high-priced, it experiences higher rates of substitution by alternatives:
 - Power-generation fuel mix (coal, NG, renewables, nuclear) via electric cars, plug-in hybrids, even telecommuting.
 - Compressed natural gas in CNG vehicles
 - Biofuels: bioethanol, biodiesel, renewable diesel
 - Commuting in electrically powered light rail
 - Even walking or biking to work.

- More relevant to industries using gasification and syngas technologies (chemicals, fertilizers, power)
 - Ethylene and propylene production from natural gas liquids instead of naphtha.
 - Wax and lubricants from plant-based, Fischer-Tropsch and ethylene-based feedstocks.
 - Methanol and derivatives from natural gas and coal instead of naphtha
 - Fertilizers from natural gas and coal instead of naphtha.
Methanol Already Big Part of Economy
Substitution by Methanol

- LPG – Dimethyl Ether
- Ethylene, Propylene via MTO
- Gasoline
 - Methyl Tertiary Butyl Ether (MTBE)
 - Direct blending into gasoline
 - Drop-in gasoline via MTG processes
 - Ethanol via methanol carbonylation
- Diesel
 - Methanol ~ 15% of biobiesel
 - DME – diesel substitute
- Bunker fuel – methanol bunkering on few pilot vessels
Substitution by Methanol

- We estimate as of end of 2016:
 - Methanol demand approximately 74 MM tpy
 - ~ 55% of methanol use is in traditional chemical applications. ~ 45% is in oil substitute applications.
 - Methanol substitution of oil is approximately ~ 0.55% of global oil market.
 - Or equivalent to ~ 32% of oil demand growth 2009 - 2017
Will Substitution by Methanol Continue?

Primary Products Prices Energy Basis
(constant 2017 dollars)

- Methanol
- Methanol Blended on Volume Basis
- Methanol Blended on Energy Basis
- Methanol Cash Cost
- Gasoline
Recent Progress in Fuel Substitution

- In 2015, United Kingdom lowered fuel taxes on methanol blended into gasoline
- Australia - Coogee demonstration project completed and regulations in place for methanol fuels
- New Zealand – In Dec. 2016, announced it would allow 3% methanol in updated fuel specifications (mid-2017)
- Israel – national standard approved for M15 in late 2016 (market potential~450kta); testing higher blends. Vehicle partner - Fiat Chrysler
Developing Methanol Economy

<table>
<thead>
<tr>
<th>Large Volume Product</th>
<th>Process from crude</th>
<th>Process from methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene, propylene</td>
<td>Naphtha refining → Steam cracking</td>
<td>UOP/Hydro MTO, Lummus/SYN DMTO, Sinopec S-MTO Lurgi MTP, Sinopec S-MTP, Tsinghua FMPT</td>
</tr>
<tr>
<td>LPG</td>
<td>Distillation Cracking → Distillation</td>
<td>DME via Haldor Topsoe, Lurgi, Uhde, others’ DME processes</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>Naphtha refining → Steam cracking → Oxidation</td>
<td>Eastman/JM formaldehyde to EG, No commercial plants. Process via glycolic acid formerly practiced.</td>
</tr>
<tr>
<td>1-butene, isobutylene, butadiene</td>
<td>Naphtha refining → Steam cracking</td>
<td>Not commercial, co-production with MTO/MTP is possible</td>
</tr>
<tr>
<td>Isoprene</td>
<td>Naphtha refining → Steam cracking → Separation</td>
<td>Formaldehyde + isobutylene, commercial, possibly practiced</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Naphtha refining → Blending</td>
<td>Direct blending</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ExxonMobil MTG, Haldor Topsoe TIGAS™</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol via Celanese TCX ®, Enerkem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methanol component of MTBE</td>
</tr>
<tr>
<td>Large Volume Product</td>
<td>Process from crude</td>
<td>Process from methanol</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Naphtha-range paraffin solvents and fluids</td>
<td>Naphtha refining \rightarrow hydrogenation</td>
<td>None known</td>
</tr>
<tr>
<td>BTX</td>
<td>Naphtha Refining \rightarrow reforming \rightarrow Separation</td>
<td>Developments in China and ExxonMobil. Successful pilot.</td>
</tr>
<tr>
<td>Kerosene/Jet fuel</td>
<td>Refining \rightarrow blending</td>
<td>None known</td>
</tr>
<tr>
<td>n-Paraffins</td>
<td>Refining \rightarrow separation</td>
<td>MeOH \rightarrow MTO \rightarrow Alpha-olefins, n-paraffin substitute</td>
</tr>
<tr>
<td>Diesel</td>
<td>Refining \rightarrow blending</td>
<td>DME via Haldor Topsoe, Lurgi, Uhde, others. Diesel substitution by DME is in trials Methanol in FAME “Drop-in” – none known</td>
</tr>
<tr>
<td>White Oils</td>
<td>Refining \rightarrow hydroprocessing</td>
<td>None known</td>
</tr>
<tr>
<td>Lubricants</td>
<td>Refining \rightarrow hydroprocessing</td>
<td>MeOH \rightarrow MTO \rightarrow Alpha-olefins \rightarrow PolyAlphaOlefins, synthetic substitutes</td>
</tr>
<tr>
<td>Bunker fuel</td>
<td>Refining</td>
<td>Direct substitution by methanol is being piloted</td>
</tr>
</tbody>
</table>
DISCLAIMER

This presentation has been prepared by a representative of Advisian.

The presentation contains the professional and personal opinions of the presenter, which are given in good faith. As such, opinions presented herein may not always necessarily reflect the position of Advisian as a whole, its officers or executive.

Any forward-looking statements included in this presentation will involve subjective judgment and analysis and are subject to uncertainties, risks and contingencies—many of which are outside the control of, and may be unknown to, Advisian.

Advisian and all associated entities and representatives make no representation or warranty as to the accuracy, reliability or completeness of information in this document and do not take responsibility for updating any information or correcting any error or omission that may become apparent after this document has been issued.

To the extent permitted by law, Advisian and its officers, employees, related bodies and agents disclaim all liability—direct, indirect or consequential (and whether or not arising out of the negligence, default or lack of care of Advisian and/or any of its agents)—for any loss or damage suffered by a recipient or other persons arising out of, or in connection with, any use or reliance on this presentation or information.