MIXED ALCOHOLS SYNTHESIS WITH A MODULAR EMPHASIS

GTC, 13 October 2015, Colorado Springs, CO

SANJIV DABEE
RAVI RAVIKUMAR
Topics

- Introduction
- Overview of Potential Gasification Products
- Mixed Alcohols Synthesis Process
- Features of Mixed Alcohols Synthesis
- Plant Performance
- Modular Fabrication and Execution
Fluor Overview

♦ One of the world’s leading publicly traded engineering, procurement, fabrication, construction, maintenance, & project management companies

♦ #109 on the FORTUNE® 500 list in 2014

♦ Over 1,000 projects annually, serving more than 600 clients in 81 different countries

♦ 40,000+ employees executing projects globally

♦ Offices in 33 countries on 6 continents

♦ 103-year company legacy

♦ Visit us at www.Fluor.com
2014 Financial Performance

- Revenue: $21.5 billion
- New awards: $28.8 billion
- Backlog: $42.5 billion

Fluor Corporation is rated at one of the higher investment grade levels:

- Long-term Ratings:
 - Standard & Poor’s “A-”
 - Moody’s “A3”
 - Fitch “A-”

- Short-term Ratings:
 - Standard & Poor’s “A-2”
 - Moody’s “P-2”
 - Fitch “F-2”

- Outlook:
 - Standard & Poor’s - Stable
 - Moody’s - Stable
 - Fitch - Stable
Potential Gasification Feeds and Products

Potential Feeds:
- Natural gas
- Residual oils
- Orimulsion
- Petroleum coke
- Coal
- Waste Oils
- Biomass
- Black liquor
- Sewage Sludge

Gasification Plant

Slag for Construction Materials

Combined Cycle

Electric Power
- Oxygen
- Nitrogen
- Argon
- Carbon Dioxide
- Sulfur/Sulfuric Acid
- Steam

Potential Products

Chemical Production
- Hydrogen
- Carbon Monoxide
- Fertilizer (Urea, ammonium nitrate)
- SNG
- Industrial Chemicals
- Methanol/Higher Alcohols
- Acetic Acid
- Naphtha
- Diesel
- Jet Fuel
- Wax

Fischer-Tropsch Synthesis
Product Pricing Summary

<table>
<thead>
<tr>
<th>Product</th>
<th>$ / MMBtu (LHV)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>$3.89</td>
<td>Based on NG (Henry Hub) price of $2.50 / MMBtu (HHV)</td>
</tr>
<tr>
<td>Gasoline</td>
<td>$11.36</td>
<td>Gasoline price of $1.39 / gal (RBOB)</td>
</tr>
<tr>
<td>Power</td>
<td>$12.90</td>
<td>4.4 cents/kWh at 3,413 Btu/kWh</td>
</tr>
<tr>
<td>Ammonia</td>
<td>$18.74</td>
<td>Ammonia price of $400 / tonne</td>
</tr>
<tr>
<td>Methanol</td>
<td>$16.17</td>
<td>Methanol price of $366 / tonne</td>
</tr>
<tr>
<td>Ethanol</td>
<td>$20.31</td>
<td>Ethanol price of $1.55 / gal</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>$39.74</td>
<td>Acetic Acid price of $550 / tonne</td>
</tr>
<tr>
<td>Propanol (as fuel)</td>
<td>$20.31</td>
<td>Assumed same as Ethanol</td>
</tr>
<tr>
<td>Propanol (as chemical)</td>
<td>> $50</td>
<td></td>
</tr>
<tr>
<td>Butanol (as chemical)</td>
<td>> $50</td>
<td></td>
</tr>
</tbody>
</table>
Reactions for the Synthesis of Alcohols

Alcohols Synthesis

\[(n+1) \text{H}_2 + (2n-1) \text{CO} = C_n\text{H}_{2n+1}\text{OH} + (n-1) \text{CO}_2\]

Shift Conversion

\[\text{CO} + \text{H}_2\text{O} = \text{CO}_2 + \text{H}_2\]
Hydrogen to CO Ratio

<table>
<thead>
<tr>
<th>Product</th>
<th>H_2/CO Stoichiometric Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>2.0</td>
</tr>
<tr>
<td>Hydrogen (Full Shift)</td>
<td></td>
</tr>
<tr>
<td>F-T Liquids</td>
<td>2.0</td>
</tr>
<tr>
<td>Ammonia (Full Shift)</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>1.0</td>
</tr>
<tr>
<td>Propanol</td>
<td>0.8</td>
</tr>
<tr>
<td>Butanol</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Features of Mixed Alcohols Production

- The synthesis catalyst is sulfur tolerant making syngas cleanup simpler and less expensive
- Raw Syngas is produced from Petcoke in a Gasifier – chosen for unique H_2 / CO ratio near 1.0 and shift conversion is not required
- Propanol can be separated for sale as a higher value chemical if market exists
- Methanol yield is relatively small compared to ethanol production
High alcohols produced can be used on-site for gasoline blending avoiding transportation and large storage costs – lower RVP and still very good octane vs Ethanol

Production of carbon containing fuel ethanol is an indirect method of carbon capture

CO₂ is removed from the recycle gas stream using Fluor Solvent Process based on flash-regeneration
 – CO₂ compressed to 2000 psig for pipeline/EOR
Alcohols Synthesis - PFD

- Syngas Feed
- CO₂ Removal
- Fuel Gas to Superheater
- BFW Make-up
- Methanol Wash
- Methanol / Water Separation
- Alcohols Reactor
- Alcohols Knockout
- Alcohols Separation
- Alcohols Product
- Condensate to Grinding Mills
Generic Block Flow Diagram
Electrical Power Production with Mixed Alcohols Synthesis

Notes:
- BFW = Boiler Feedwater
- CO = Carbon Monoxide
- CWS = Cooling Water Supply
- CWR = Cooling Water Return
- H₂ = Hydrogen
- HP = High Pressure
- N₂ = Nitrogen
- O₂ = Oxygen
Alcohols Synthesis Performance Summary

<table>
<thead>
<tr>
<th>Performance Summary</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke Feed (AR)</td>
<td>stpd</td>
<td>2,260</td>
</tr>
<tr>
<td>Raw Water</td>
<td>gpm</td>
<td>2,118</td>
</tr>
<tr>
<td>HP O₂</td>
<td>stpd</td>
<td>2,238</td>
</tr>
<tr>
<td>Alcohols</td>
<td>stpd</td>
<td>1,100</td>
</tr>
<tr>
<td>Ethanol</td>
<td>bbl/day</td>
<td>2,049</td>
</tr>
<tr>
<td>Propanol</td>
<td>bbl/day</td>
<td>2,397</td>
</tr>
<tr>
<td>Butanol</td>
<td>bbl/day</td>
<td>3,341</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>stpd</td>
<td>422</td>
</tr>
<tr>
<td>CO₂</td>
<td>stpd</td>
<td>3,405</td>
</tr>
<tr>
<td>Power Consumed</td>
<td>MW</td>
<td>98</td>
</tr>
<tr>
<td>Power Generated</td>
<td>MW</td>
<td>62</td>
</tr>
<tr>
<td>Power Export/(Import)</td>
<td>MW</td>
<td>-36</td>
</tr>
</tbody>
</table>
Alcohols Synthesis with Biomass Gasification – Performance Summary

<table>
<thead>
<tr>
<th>Performance Summary</th>
<th>Petcoke Gasi</th>
<th>Biomass Gasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coke Feed (AR)</td>
<td>stpd</td>
<td>2,260</td>
</tr>
<tr>
<td>Biomass Feed</td>
<td>stpd</td>
<td>1,270</td>
</tr>
<tr>
<td>Raw Water</td>
<td>gpm</td>
<td>2,118</td>
</tr>
<tr>
<td>HP O₂</td>
<td>stpd</td>
<td>2,238</td>
</tr>
<tr>
<td>Alcohols</td>
<td>stpd</td>
<td>1,100</td>
</tr>
<tr>
<td>Ethanol</td>
<td>bbl/day</td>
<td>2,049</td>
</tr>
<tr>
<td>Propanol</td>
<td>bbl/day</td>
<td>2,397</td>
</tr>
<tr>
<td>Butanol</td>
<td>bbl/day</td>
<td>3,341</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>stpd</td>
<td>422</td>
</tr>
<tr>
<td>CO₂</td>
<td>stpd</td>
<td>3,405</td>
</tr>
<tr>
<td>Power Consumed</td>
<td>MW</td>
<td>98</td>
</tr>
<tr>
<td>Power Generated</td>
<td>MW</td>
<td>115</td>
</tr>
<tr>
<td>Power Export/(Import)</td>
<td>MW</td>
<td>2</td>
</tr>
</tbody>
</table>
Process Advantages

- Gasoline Octane Enhancement – Adding <10 vol% product increases octane from 87 to 91
- Reduced tail pipe emissions \((CO \text{ and } NOx)\)
- Mixed alcohols product Ecalene certified for gasoline blending by US EPA
- Ideal facility for refinery product enhancement
 - Feed (coke) is a refinery by-product for export
 - Product (Alcohols) is a refinery product blend import
- Biomass Gasification allows for power balance and could qualify for carbon credit
- DOW and WRI \((Western \text{ Research Institute, Larame, Wyoming})\) are potential licensors
- Fluor received a patent on the overall flowsheet configuration
Generic Block Flow Diagram
Modular Execution

Notes:
- BFW = Boiler Feedwater
- CO = Carbon Monoxide
- CWS = Cooling Water Supply
- CWR = Cooling Water Return
- H₂ = Hydrogen
- HP = High Pressure
- N₂ = Nitrogen
- O₂ = Oxygen
Modular Fabrication & Execution

Very Large Module

Module on a Barge

Pipe Racks

Truck-able Module
Modular Fabrication & Execution
General Considerations

- Evaluate Cost Effectiveness between Stick Build vs Module Design
- Site Labor Availability
- Shop Labor vs. Site Labor Posture
- Site Labor Agreement
- Site Location/logistics
- Truckable vs. Large Modules (weight and size)
1st Generation Modular Execution
- Piperacks
- Super Modules for Piperacks
 - First used on AEF in 1991
 - Now extensively used on most Fluor projects
2nd Generation Modular Construction Execution

1st Generation plus

- Equipment or PAUs (Preassembled Units)
- Equipment on module
- Modules around equipment
- Pre-Dressed Vessels
- Improvement with Hours Moved Offsite
3rd Gen Modular Execution™

- Proprietary design layout work process
- Modularization drives layout
- Reduces quantities and field work
- Optimizes process block
- Promotes cost savings and schedule certainty
- Early pre-commissioning activities in controlled environment
3rd GEN Modular Execution™
Very Large Module
Why 3rd GEN Modular Execution℠?

- Clients looking for execution / project delivery improvements
 - Cost Effectiveness
 - Predictability – Cost and Schedule
- Cost and execution improvements through modularization are generally recognized
- Fluor have been steadily increasing level of modularization with consideration of site specifics
- Challenged by several Clients to increase level of E&I on modules
 - Overcome the traditional barrier
- Recognized In-Situ projects are being executed in “Traditional” manner
- Results:
 - Developed new approach ideally suited to Canadian In-situ Business and other difficult environments
 - Cost savings
 - Predictability improvements
Site Envelope Statistics

Traditional
320,000 m²

2nd Generation
200,000 m²

3rd Generation
84,000 m²
Expected Results from 3rd GEN Modular Execution™

♦ Reduced TIC
 - Up to 20% against previous “best-in-class”
 - Reduced plot area lowers quantities
 - Improved labor productivity with work shift to shop vs. field
 - Reduced on-site construction

♦ Enhanced Cost and Schedule Certainty Through Reduced Risk
 - Reduced E&I field scope
 - Back-end completion scope and complexity minimized
 - Less winter concrete

♦ Improved Safety and Quality

♦ Minimized Environmental Footprint

♦ Repeatable and Portable

♦ Operations & Maintenance Needs Maintained
Fluor Modularization Experience

CNRL
Horizon Phase 1
Project U&O

Nexen
Long Lake Upgrader
Phase 1

Shell
Ouest Carbon Capture

BP
Whiting Refinery
Modernization

Marathon
Detroit Heavy Oil
Upgrade Project

TOTAL
Deep Conversion
Project

ExxonMobil
Kitomba “K” & “E” FPSO

ConocoPhillips
Bahrain Development
Project

Exxon Neftegas
Salihlin 1

Supreme Modular
Fabr., Inc. (SMFI)
Edmonton, Canada
• Fabrication Yard

ICA Fluor
Tampico, Mexico
• Fabrication Yard

AG&P Fluor
Batangas, Philippines
• Fabrication Yard

Gladstone Pressure
Welders (GPW)
Gladstone, Australia
• Fabrication Yard

Standard Piperack Module

Truckable Process Module

Super Module

Offshore Platform Module
Disclaimer

This presentation was prepared by Fluor Enterprises, Inc. and based in part on information not within our control. While we believe that the information contained, in the context presented, is reliable, Fluor Enterprises, Inc. does not guarantee the accuracy of it. The use of such information is at the user’s sole risk and shall constitute a release and agreement to indemnify Fluor Enterprises, Inc. from and against any and all liability in connection therewith, whether arising out of Fluor Enterprises, Inc.’s negligence or otherwise.